用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用

简介: 通义灵码, 作为国内首个 AI 程序员,从最开始的内测到公测,再到通义灵码正式发布第一时间使用,再到后来使用企业定制版的通义灵码,再再再到现在通义灵码2.0,我可以说“用着”通义灵码成长的为数不多的程序员之一了吧。咱闲言少叙,直奔主题!今天,我会聊一聊通义灵码的新功能和通义灵码2.0与1.0的体验感。

作者:小鱼


01 引言

通义灵码是我一直使用的编码协助工具,我也愿称之为国内程序员的”饭搭子”。


通义灵码, 作为国内首个 AI 程序员,从最开始的内测到公测,再到通义灵码正式发布第一时间使用,再到后来使用企业定制版的通义灵码,再再再到现在通义灵码2.0,我可以说“用着”通义灵码成长的为数不多的程序员之一了吧。


咱闲言少叙,直奔主题!今天,我会聊一聊通义灵码的新功能和通义灵码2.0与1.0的体验感。


02 通义灵码更新与安装

2.1 IDE 插件更新

关于通义灵码2.0版本,是在今年1月13日(2025/1/13)官宣的全新模型选择功能,并且支持基于百炼的 DeepSeek-V3 和 DeepSeek-R1 满血版模型。这对于我们技术er来说,确实是一次重大的升级。尤其 Deepseek 的爆火,并且通义灵码结合 DeepSeek,这是多么好的福利啊。幸福来得就是这么突然。


所以,在聊通义灵码2.0的使用感受前,我们首先要做的是下载插件或者更新插件。

2.1.1 PyCharm 更新

这里也非常简单, 我就以Pycharm为例(我的是最新版本的PyCharm),可以直接在Pycharm→Setting →Pluging:


  • 如果没有安装,则在”Marketplace”搜索 tongyilingma即可;
  • 如果已安装,则直接在”Installed” 更新即可。这里就不做过多赘述,如下图。

image.png

2.1.2 VSCode 更新

VSCode安装与更新步骤,可以参照官网的安装方式,也可以参照下图:

image.png

2.2 官网下载更新

也可以直接在官网下载,地址:https://lingma.aliyun.com/download

image.png


03 使用体验

3.1 生成单元测试

接着,打开编译器(PyCharm), 登录通义灵码, 选择模型deepseek-r1,如下图:

image.png

接下来,我就例举实际工作中的一个业务场景, 看看结合了deepseek-r1的通义灵码,在输出的结果与丝滑度,具体如截图:

image.png

image.png

可以看到,在整个输出过程中,思考的时间很短,而且输出的代码的能力也很强,并且输出过程中,有对异常场景的判断。


对通义灵码来说,如果再增加一些对上下文的理解,或许输出的代码会更完美。整体来说,相对于通义灵码1.0 ,在 DeepSeek 加持下的通义灵码,不管是代码质量,还是代码生成速度,亦或者代码的分析,都有很大的提升。

3. 2 跨语言编程

为了验证通义灵码的跨语言编程,这里的模型我选择 deepseek -v3,这里我把一个Python写的代码,切换成Java来实现,具体如下:

image.png

在整个过程中图片:

image.png

从两个图片我们可以看从过程到结果,通义灵码2.0给出了:


  • 思考过程
  • 实现业务代码
  • 代码替换的库、方法
  • 代码修改点
  • 代码注释


所以,你看,我们在写代码过程中,是不是也会这么思考,也会做这些事情呢?我想,这就是通义灵码2.0的优势,也是大部分程序员选择通义灵码的原因吧。

3.3 通义灵码2.0 与1.0 对比

再说到2.0 与1.0的对比体验, 我在上面也有体现,为了让大家更直观的比对,这里我总结了几点:

  • 模型的集成, 2.0集成了DeepSeek模型,这对我们来有更多选择:

image.png

  • 代码的输出更快,思考时间更短,生成的代码可直接运行的成功率更高
  • 对业务的理解能力有提升,这太有感触了:
  • 1.0版本,我记得同样是上面输入的场景,结果输出的内容我需要修改5处。
  • 而2.0版本,我修改的内容只有2处,这就是质的提升。
  • 对话理解能力的提升,我输入的内容不是非常清晰,但是2.0的理解能力和异常处理,容错能力包括性能,都可以给考虑到,但是1.0版本,这方面就有些欠缺。

image.png


04 总结

2025年,注定是一个不平凡的年, 哪吒2的上映, 通义灵码2.0的全面升级,DeepSeek的开源,以及各个企业大团结一致对外,注定了我们在AI领域会有更高的成就。今天深度体验了通义灵码2.0的新功能,以及与1.0的对比体验,整体来说,非常 Nice。


  • 代码生成速度:非常快,非常丝滑, 这不仅仅是 DeepSeek 模型的集成,更是阿里云百炼平台的功劳。
  • 自动生成单元测试:这对我们技术人员来说,太方便了,真的是应了那句话:AI 不是替代人的工作,而是协助人完成工作
  • 代码生成准确率:一个 AI 工具仅仅能生成代码,但是代码却无法应用于实践中,那么这个 AI 功能就不是一个成功的工具,但通义灵码恰恰相反,它不仅生成快速生成代码,而且还能基于业务生成可执行的代码,这就节省了我们的代码调试时间
  • 跨语言编程:这个功能太重要了,尤其对应用开发同学来说,这种我可以通过通义灵码就能实现的业务功能,就不再需要在看别人的时(lian)间(se)了哦。
  • 安全性:对企业来说,为什么不用第三方AI工具,就是因为安全性,担心自己的企业的核心业务代码被有企图的三方利用,但是,这恰恰体现了通义灵码的意义,它就是为了”守护”我们的核心资产而存在的。


最后来总结我今天的测评,也希望我们打工人像哪吒一样:唯有突破,才能成功

相关文章
|
7月前
|
缓存 监控 安全
通义大模型与现有企业系统集成实战《CRM案例分析与安全最佳实践》
本文档详细介绍了基于通义大模型的CRM系统集成架构设计与优化实践。涵盖混合部署架构演进(新增向量缓存、双通道同步)、性能基准测试对比、客户意图分析模块、商机预测系统等核心功能实现。同时,深入探讨了安全防护体系、三级缓存架构、请求批处理优化及故障处理机制,并展示了实时客户画像生成和动态提示词工程。通过实施,显著提升客服响应速度(425%)、商机识别准确率(37%)及客户满意度(15%)。最后,规划了技术演进路线图,从单点集成迈向自主优化阶段,推动业务效率与价值持续增长。
305 8
|
8月前
|
传感器 人工智能 自然语言处理
火热邀测!DataWorks数据集成支持大模型AI处理
阿里云DataWorks数据集成新增大模型AI处理功能,支持在数据同步中无缝调用通义千问等AI模型,实现文本翻译、情感分析、摘要生成等功能。适用于电商客服、智能汽车、供应链、医疗、金融、法律及教育等多个场景,大幅提升数据处理效率与洞察深度。用户可通过自然语言配置,快速完成高级数据分析与处理,无需额外部署调试。立即申请测试资格,体验智能化数据处理!
1380 4
火热邀测!DataWorks数据集成支持大模型AI处理
|
9月前
|
弹性计算 机器人 应用服务中间件
一键部署开源Qwen3并集成到钉钉、企业微信
Qwen3系列模型现已正式发布并开源,包含8款“混合推理模型”,其中涵盖两款MoE模型(Qwen3-235B-A22B与Qwen3-30B-A3B)及六个Dense模型。阿里云计算巢已支持Qwen3-235B-A22B和Qwen3-32B的私有化部署,用户可通过计算巢轻松完成部署,并借助AppFlow集成至钉钉机器人或企业微信。文档详细介绍了从模型部署、创建应用到配置机器人的全流程,帮助用户快速实现智能助手的接入与使用。
826 19
一键部署开源Qwen3并集成到钉钉、企业微信
|
7月前
|
存储 文字识别 自然语言处理
通义大模型在文档自动化处理中的高效部署指南(OCR集成与批量处理优化)
本文深入探讨了通义大模型在文档自动化处理中的应用,重点解决传统OCR识别精度低、效率瓶颈等问题。通过多模态编码与跨模态融合技术,通义大模型实现了高精度的文本检测与版面分析。文章详细介绍了OCR集成流程、批量处理优化策略及实战案例,展示了动态批处理和分布式架构带来的性能提升。实验结果表明,优化后系统处理速度可达210页/分钟,准确率达96.8%,单文档延迟降至0.3秒,为文档处理领域提供了高效解决方案。
813 1
|
6月前
|
XML jenkins 机器人
JMeter+Ant+Jenkins实现接口自动化测试持续集成
本文介绍了如何使用Ant生成JMeter接口测试报告,并集成到Jenkins中实现自动化测试。内容涵盖Ant与JMeter环境配置、build.xml文件设置、测试执行及报告生成,同时包括Jenkins插件安装、项目配置和钉钉消息通知的集成,帮助实现持续测试与结果可视化。
834 0
|
8月前
|
JSON 缓存 并行计算
NVIDIA 实现通义千问 Qwen3 的生产级应用集成和部署
阿里巴巴近期开源了通义千问Qwen3大语言模型(LLM),包含两款混合专家模型(MoE)235B-A22B与30B-A3B,以及六款稠密模型(Dense)从0.6B到32B不等。开发者可基于NVIDIA GPU使用TensorRT-LLM、Ollama、SGLang、vLLM等框架高效部署Qwen3系列模型,实现快速词元生成和生产级应用开发。
|
4月前
|
人工智能 Java API
Java与大模型集成实战:构建智能Java应用的新范式
随着大型语言模型(LLM)的API化,将其强大的自然语言处理能力集成到现有Java应用中已成为提升应用智能水平的关键路径。本文旨在为Java开发者提供一份实用的集成指南。我们将深入探讨如何使用Spring Boot 3框架,通过HTTP客户端与OpenAI GPT(或兼容API)进行高效、安全的交互。内容涵盖项目依赖配置、异步非阻塞的API调用、请求与响应的结构化处理、异常管理以及一些面向生产环境的最佳实践,并附带完整的代码示例,助您快速将AI能力融入Java生态。
708 12
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
1107 8
|
8月前
|
自然语言处理 IDE 开发工具
通义灵码新增 Inline Chat 能力,代码行内随时问答,沉浸式编码,心流不断
通义灵码行间会话(Inline Chat)支持开发者在代码编辑器区域进行对话,开发者可以通过自然语言对话的方式进行单个文件内的代码修改或进行即时提问。
425 0

热门文章

最新文章