浙江大学2009年数学分析考研试题第7题参考解答

简介: 题目. 设 $f(x)$ 在 $[a,b]$上 可导, 导函数 $f'(x)$ 在 $[a,b]$ 上单调下降, 且 $f'(b)>0$. 证明: \[ \sev{\int\limits_a^b\cos f(x)\rd x}\leq \frac{2}{f'(b)}.

题目. 设 $f(x)$ 在 $[a,b]$上 可导, 导函数 $f'(x)$ 在 $[a,b]$ 上单调下降, 且 $f'(b)>0$. 证明: \[ \sev{\int\limits_a^b\cos f(x)\rd x}\leq \frac{2}{f'(b)}. \]

证明: 由换元法及积分第二中值定理, $$\beex \bea \int_a^b \cos f(x)\rd x &=\int_{f(a)}^{f(b)} \frac{\cos y\rd y}{f'(f^{-1}(y))}\\ &=\frac{1}{f'(a)}\int_{f(a)}^\xi\cos y\rd y +\frac{1}{f'(b)}\int_\xi^{f(b)}\cos y\rd y\\ &=\frac{\sin\xi -\sin f(a)}{f'(a)} +\frac{\sin f(b)-\sin \xi}{f'(b)}\\ &\equiv I_1+I_2. \eea \eeex$$ 若 $I_1\cdot I_2\geq 0$, 则 $$\bex \sev{\int_a^b \cos f(x)\rd x} \leq \frac{\sev{\sin f(a)-\sin f(b)}}{f'(b)} \leq\frac{2}{f'(b)}; \eex$$ 若 $I_1\cdot I_2<0$, 则 $$\bex \sev{\int_a^b \cos f(x)\rd x} \leq \max\sed{\frac{\sev{\sin \xi-\sin f(a)}}{f'(a)},\frac{\sev{\sin f(b)-\sin \xi}}{f'(b)}} \leq\frac{2}{f'(b)}. \eex$$ 

目录
相关文章
|
网络性能优化 数据安全/隐私保护 网络架构
【王道考研计算机网络】—OSI参考模型
【王道考研计算机网络】—OSI参考模型
|
存储 人工智能 搜索推荐
排序算法——参考《王道考研》+《大话数据结构》
排序算法——参考《王道考研》+《大话数据结构》
165 0
日期累加(北京理工大学考研机试题)
日期累加(北京理工大学考研机试题)
88 0
日期累加(北京理工大学考研机试题)
成绩排序2 (清华大学考研机试题)
成绩排序2 (清华大学考研机试题)
86 0
成绩排序2 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
102 0
成绩排序 (清华大学考研机试题)
|
内存技术
【计算机网络考研面试】体系结构与参考模型参考模型
【计算机网络考研面试】体系结构与参考模型参考模型
74 0
|
Perl
南开大学2012年数学分析考研试题参考解答
1 ($15'$) 求极限 $\dps{\lim_{x\to \infty} x^m \int_0^\frac{1}{x} \sin t^2\rd t,}$ 其中 $m$ 为任意整数. 解答: 当 $m=0,-1,-2,\cdots$ 时, 原极限 $\dps{=\lim_{s\to 0}s^{-m}\int_0^s \sin t^2\rd t=0.
1002 0
|
机器学习/深度学习 测试技术
【Programming Clip】06、07年清华计算机考研上机试题解答(个别测试用例无法通过)
作者:gnuhpc  出处:http://www.cnblogs.com/gnuhpc/ 1.清华计算机系研究生考试上机07年试题解答(自己今天上午做的,有一个不能完成所有测试用例~)   清华大学计算机科学与技术系 2007 年硕士研究生招生复试 2007 年 3 月 24 日 注意事项: 1. 试题共三题,总计 100 分,考试时间为一个半小时。
719 0

热门文章

最新文章