[詹兴致矩阵论习题参考解答]习题3.12

简介: 12. (Webster) 设 $A=(a_{ij})$ 是有 $k$ 个正元素的 $n$ 阶双随机矩阵. 证明, 存在 $1,2,\cdots,n$ 的一个排列 $\sigma$ 使得 $$\bex \sum_{i=1}^n\frac{1}{a_{i\sigma(i)}}\leq k.

12. (Webster) 设 $A=(a_{ij})$ 是有 $k$ 个正元素的 $n$ 阶双随机矩阵. 证明, 存在 $1,2,\cdots,n$ 的一个排列 $\sigma$ 使得 $$\bex \sum_{i=1}^n\frac{1}{a_{i\sigma(i)}}\leq k. \eex$$

 

 

证明: 由 Birkhoff 定理 (第 35 页), $$\bex A=\sum \al_kP^k,\quad 0\leq \al_k\leq 1,\quad \sum \al_k=1,\quad P^k\mbox{ 为置换阵}. \eex$$ 而对任一矩阵 $B$, $$\beex \bea B\circ A&=\sum \al_k B\circ P^k,\\ \sum_{i=1}^n b_{ij}a_{ij} &=\sum \al_k \sum_{i,j=1}^n b_{ij}p^k_{ij}\\ &\geq \min_{P\in \Pi_n} \sum_{i,j=1}^n b_{ij}p_{ij}\quad\sex{\Pi_n\mbox{ 为全体置换阵构成的集合}}\\ &=\sum_{i=1}^n b_{i\sigma(i)}\quad\sex{\mbox{存在与 }B\mbox{ 有关的排列 }\sigma}. \eea \eeex$$ 取定 $B$ 为 $$\bee\label{3_12_b} b_{ij}=\sedd{\ba{ll} \cfrac{1}{a_{ij}},&a_{ij}\neq 0,\\ k+1,&a_{ij}=0. \ea} \eee$$ 则 $$\bee\label{3_12_k} k=\sum_{i,j=1}^n b_{ij}a_{ij}\geq \sum_{i=1}^n b_{i\sigma(i)}. \eee$$ 因为各 $b_{i\sigma(i)}\geq 0$, 而由 \eqref{3_12_k} 知 $b_{i\sigma(i)}$ 不可能为 $k+1$, 由 \eqref{3_12_b}, $$\bex b_{i\sigma(i)}=\frac{1}{a_{i\sigma(i)}}. \eex$$ 如此, \eqref{3_12_k} 成为 $$\bex k\geq\sum_{i=1}^n \frac{1}{a_{i\sigma(i)}}. \eex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.1
1. (Maybee) 设 $A$ 是一个树符号模式. 证明:   (1). 若 $A$ 的每个简单 $2$-圈都是正的, 则对于任何 $B\in Q(A)$, 存在可逆的实对角矩阵 $D$ 使得 $D^{-1}AD$ 为对称矩阵.
645 0
[詹兴致矩阵论习题参考解答]习题6.15
15. (Hu-Li-Zhan) 秩为 $k$ 的 $n$ 阶对称 $0-1$ 矩阵中 $1$ 的个数可能是哪些数呢?       解答: 见 [Q. Hu, Y.Q. Li, X.Z. Zhan, Possible numbers of ones in $0-1$ matrices wit...
580 0
|
Perl
[詹兴致矩阵论习题参考解答]习题6.9
9. (Hopf) 将 $n$ 阶正矩阵 $A=(a_{ij})$ 的特征值按模从大到小排列为 $$\bex \rho(A)>|\lm_2|\geq \cdot \geq |\lm_n|, \eex$$ 并记 $$\bex \al=\max\sed{a_{ij};1\leq i,j\leq n}, \quad \beta=\min \max\sed{a_{ij};1\leq i,j\leq n}.
530 0
|
Perl
[詹兴致矩阵论习题参考解答]习题5.2
2. 用 $\im A$ 表示 $A\in M_n$ 的像空间: $$\bex \im A=\sed{Ax;x\in\bbC^n}. \eex$$ 设 $A,B\in M_n$ 为正交投影矩阵, 满足 $$\bex \sen{A-B}_\infty
565 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.5
5. (Friedland) 给定 $A\in M_n$, $\lm_i\in \bbC$, $i=1,\cdots,n$. 证明: 存在对角矩阵 $D\in M_n$ 使得 $\sigma(A+D)=\sed{\lm_1,\cdots,\lm_n}$, 并且满足上述条件的对角矩阵 $D$ 只有有限多个.
553 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题5.3
3. (Bhatia-Davis) 设 $A,B\in M_n$ 为酉矩阵, 则 $$\bex \rd(\sigma(A),\sigma(B))\leq \sen{A-B}_\infty. \eex$$     证明: [见 R.
687 0
[詹兴致矩阵论习题参考解答]习题4.16
16. (Fan-Hoffman) 设 $A\in M_n$, $A=UP$ 为极分解, $U$ 为酉矩阵, $P$ 为半正定矩阵. 若 $W\in M_n$ 为酉矩阵, 则 $$\bex \sen{A-U}\leq \sen{A-W}\leq \sen{A+U} \eex$$ 对任何酉不变范数成立.
621 0
|
资源调度 前端开发 rax
[詹兴致矩阵论习题参考解答]习题4.10
10. 设 $A,B\in M_n$ 并且 $AB$ 为 Hermite 矩阵, 则对任何酉不变范数 $$\bex \sen{AB}\leq \sen{\Re(BA)}. \eex$$       证明: (1).
568 0
[詹兴致矩阵论习题参考解答]习题4.9
9. 设 $\sen{\cdot}$ 是 $M_n$ 上的酉不变范数, 则 $\sen{\cdot}$ 是次可乘当且仅当 $$\bex \sen{\diag(1,0,\cdots,0)}\geq 1. \eex$$       证明: $\ra$: 若 $\sen{\cdot}$ 次可乘, ...
588 0
[詹兴致矩阵论习题参考解答]习题4.13
13. (Bhatia-Davis) 设 $A,B,X\in M_n$, 则 $$\bex \sen{AXB^*}\leq \frac{1}{2}\sen{A^*AX+XB^*B} \eex$$ 对任何酉不变范数成立.
531 0