[詹兴致矩阵论习题参考解答]习题5.4

简介: 4. (G.M. Krause) 令 $$\bex \lm_1=1,\quad \lm_2=\frac{4+5\sqrt{3}I}{13},\quad \lm_3=\frac{-1+2\sqrt{3}i}{13},\quad v=\sex{\sqrt{\frac{5}{8}},\frac{1}{2},\sqrt{\frac{1}{8}}}^T.

4. (G.M. Krause) 令 $$\bex \lm_1=1,\quad \lm_2=\frac{4+5\sqrt{3}I}{13},\quad \lm_3=\frac{-1+2\sqrt{3}i}{13},\quad v=\sex{\sqrt{\frac{5}{8}},\frac{1}{2},\sqrt{\frac{1}{8}}}^T. \eex$$ 再令 $$\bex A=\diag(\lm_1,\lm_2,\lm_3),\quad U=I-2vv^T,\quad B=-U^*AU, \eex$$ 则 $U$ 为酉矩阵, $A,B$ 为正规矩阵. 验证 $$\bex \rd (\sigma(A),\sigma(B))=\sqrt{\frac{28}{13}},\quad \sen{A-B}_\infty =\sqrt{\frac{27}{13}}. \eex$$ 于是, 对于这一对正规矩阵 $A,B$, $$\bex \rd (\sigma(A)),\sigma(B))>\sen{A-B}_\infty. \eex$$

 

 

证明: 记 $$\bex \sigma(A)=\sed{\al_1,\al_2,\al_3} =\sed{\lm_1,\lm_2,\lm_3},\quad \sigma(B)=\sed{\beta_1,\beta_2,\beta_3} =\sed{-\lm_1,-\lm_2,-\lm_3}. \eex$$ 则 $$\beex \bea \sigma=\sed{1,2,3}&\ra \max_i|\al_i-\beta_{\sigma(i)}| =2,\\ \sigma=\sed{1,3,2}&\ra \max_i|\al_i-\beta_{\sigma(i)}| =2,\\ \sigma=\sed{2,1,3}&\ra \max_i|\al_i-\beta_{\sigma(i)}| =\sqrt{\frac{28}{13}},\\ \sigma=\sed{2,3,1}&\ra \max_i|\al_i-\beta_{\sigma(i)}| =\sqrt{\frac{28}{13}},\\ \sigma=\sed{3,1,2}&\ra \max_i|\al_i-\beta_{\sigma(i)}| =\sqrt{\frac{28}{13}},\\ \sigma=\sed{3,2,1}&\ra \max_i|\al_i-\beta_{\sigma(i)}| =\sqrt{\frac{28}{13}}. \eea \eeex$$ 故 $$\bex \rd(\sigma(A),\sigma(B))=\sqrt{\frac{28}{13}}. \eex$$ 又通过数学软件可以算出 $(A-B)^*(A-B)$ 的特征值为 $$\bex \frac{27}{13},\quad \frac{27}{13},\quad \frac{4}{13}, \eex$$ 而 $$\bex \sen{A-B}_\infty=\sqrt{\frac{27}{13}}. \eex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题6.14
14. (Shao) 设非负方阵 $A$ 具有 (6.22) 的形式并且 $A$ 没有零行也没有零列. 证明: $A$ 不可月且非本原指标为 $k$ 当且仅当乘积 $$\bex A_{12}A_{23}\cdots A_{k-1,k}A_{k1} \eex$$ 是本原矩阵.
524 0
[詹兴致矩阵论习题参考解答]习题5.1
1. $A\in M_n$ 称为正交投影矩阵如果 $A$ 是 Hermite 矩阵且幂等: $$\bex A^*=A=A^2. \eex$$ 证明: 若 $A,B\in M_n$ 为正交投影矩阵, 则 $\sen{A-B}_\infty \leq 1$.
725 0
[詹兴致矩阵论习题参考解答]习题4.1
1. (Fan-Hoffman). 设 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 则 $$\bex \lm_j(\Re A)\leq s_j(A),\quad j=1,\cdots,n.
528 0
[詹兴致矩阵论习题参考解答]习题4.7
7. 设 $A_0\in M_n$ 正定, $A_i\in M_n$ 半正定, $i=1,\cdots,k$, 则 $$\bex \tr \sum_{j=1}^k \sex{\sum_{i=0}^jA_i}^{-2}A_j
718 0
[詹兴致矩阵论习题参考解答]习题4.6
6. 设 $A,B\in M_n$ 半正定, 则 $$\bex s_j(A-B)\leq s_j\sex{ \sex{\ba{cc} A&0\\ 0&B \ea}},\quad j=1,\cdots,n.
578 0
[詹兴致矩阵论习题参考解答]习题4.13
13. (Bhatia-Davis) 设 $A,B,X\in M_n$, 则 $$\bex \sen{AXB^*}\leq \frac{1}{2}\sen{A^*AX+XB^*B} \eex$$ 对任何酉不变范数成立.
540 0
|
Perl
[詹兴致矩阵论习题参考解答]习题3.2
2. 设 $A\in M_n$, $B\in M_{r,t}$ 是 $A$ 的一个子矩阵. 则它们的奇异值满足 $$\bex s_j(B)\leq s_j(A),\quad j=1,\cdots,\min\sed{r,t}.
511 0
|
Perl
[詹兴致矩阵论习题参考解答]习题3.15
15. 设 $S_n[a,b]$ 表示所有元素属于给定的区间 $[a,b]$ 的 $n$ 阶实对称矩阵的集合. 对于 $j=1,n$ 确定 $$\bex \max\sed{\lm_j(A);\ A\in S_n[a,b]}\mbox{ 和 } \min\sed{\lm_j(A);\ A\in S_n[a,b]}, \eex$$ 以及分别取到最大值和最小值的矩阵.
792 0
[詹兴致矩阵论习题参考解答]习题3.4
4. 设 $x,y,u\in\bbR^n$ 的分量都是递减的. 证明:   (1). 若 $x\prec y$ 则 $\sef{x,u}\leq \sef{y,u}$.   (2). 若 $x\prec_w y$ 且 $u\in\bbR^n_+$, 则 $\sef{x,u}\leq \sef{y,u}$.
535 0
[詹兴致矩阵论习题参考解答]习题3.14
14. 用 Hadamard 不等式 (3.5) 证明下面的不等式 (也称为 Hadamard 不等式): 设 $A=(a_1,\cdots,a_n)\in M_n$, 则 $$\bex |\det A|\leq \prod_{i=1}^n \sen{a_i}, \eex$$ 其中 $\sen{\cdot}$ 表示列向量的欧氏范数.
727 0