[詹兴致矩阵论习题参考解答]习题4.9

简介: 9. 设 $\sen{\cdot}$ 是 $M_n$ 上的酉不变范数, 则 $\sen{\cdot}$ 是次可乘当且仅当 $$\bex \sen{\diag(1,0,\cdots,0)}\geq 1. \eex$$       证明: $\ra$: 若 $\sen{\cdot}$ 次可乘, ...

9. 设 $\sen{\cdot}$ 是 $M_n$ 上的酉不变范数, 则 $\sen{\cdot}$ 是次可乘当且仅当 $$\bex \sen{\diag(1,0,\cdots,0)}\geq 1. \eex$$

 

 

 

证明: $\ra$: 若 $\sen{\cdot}$ 次可乘, 则 $$\beex \bea \sen{\diag(1,0,\cdots,0)} &=\sen{\diag(1,0,\cdots,0)\cdot \diag(1,0,\cdots,0)}\\ &\leq \sen{\diag(1,0,\cdots,0)}\cdot \sen{\diag(1,0,\cdots,0)}. \eea \eeex$$ 由 $$\bex \diag(1,0,\cdots,0)\neq 0\ra \sen{\diag(1,0,\cdots,0)}>0 \eex$$ 即知 $$\bex 1\leq \sen{\diag(1,0,\cdots,0)}. \eex$$ $\la$: 由第 11 题知 $$\bex \sen{ABC}\leq \sen{A}_\infty\sen{C}_\infty\sen{B},\quad\forall\ A,B,C\in M_n. \eex$$ 取 $C=I$ 有 $$\bex \sen{AB}\leq \sen{A}_\infty\sen{B},\quad \forall\ A,B\in M_n. \eex$$ 为证 $\sen{\cdot}$ 是次可乘的, 仅须验证 $$\bee\label{4_9_inf} \sen{A}_\infty\leq \sen{A},\quad \forall\ A\in M_n. \eee$$而 \eqref{4_9_inf} 可验证如下. 对 $A\in M_n$, 由奇异值分解, 存在酉阵 $U,V$ 使得 $$\bex UAV=\diag(s_1,\cdots,s_n). \eex$$ 于是 $$\beex \bea \sen{A}_\infty &=s_1\quad\sex{\mbox{可参考第 1 章第 13 题的证明}}\\ &\leq \sen{s_1\diag(1,0,\cdots,0)}\\ &\leq \sen{\diag(s_1,\cdots,s_n)}\quad\sex{ \sex{s_1,0,\cdots,0}\prec \sex{s_1,\cdots,s_n},\mbox{ 由 Fan 支配原理} }\\ &=\sen{A}. \eea \eeex$$

目录
相关文章
|
资源调度 机器学习/深度学习 Perl
[詹兴致矩阵论习题参考解答]习题7.5
5. 元素属于 $\sed{0,*}$ 的矩阵称为零模式矩阵. 设 $A$ 是零模式矩阵, 用 $Q_\bbF(A)$ 记元素属于域 $\bbF$ 的具有零模式 $A$ 的矩阵的集合, 即若 $B\in Q_F(A)$, $B=(b_{ij})$, $A=(a_{ij})$, 则 $b_{ij}=0$ 当且仅当 $a_{ij}=0$.
705 0
[詹兴致矩阵论习题参考解答]习题6.11
11. (Gasca-Pena) 一个 $n$ 阶可逆矩阵 $A$ 是全面非负的当且仅当对每个 $1\leq k\leq n$, $$\bex \det A[1,2,\cdots,k]>0, \eex$$ $$\bex \det A[\al\mid 1,2,\cdots,k]\geq 0,\quad...
573 0
[詹兴致矩阵论习题参考解答]习题6.14
14. (Shao) 设非负方阵 $A$ 具有 (6.22) 的形式并且 $A$ 没有零行也没有零列. 证明: $A$ 不可月且非本原指标为 $k$ 当且仅当乘积 $$\bex A_{12}A_{23}\cdots A_{k-1,k}A_{k1} \eex$$ 是本原矩阵.
514 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.8
8. 设 $A$ 是个不可约奇异 $M$-矩阵, 则存在正向量 $x$ 满足 $Ax=0$.       证明: 由 $A$ 为 $M$-矩阵知 $$\bex A=cI-B,\quad c\geq \rho(B),\quad B\geq 0.
627 0
[詹兴致矩阵论习题参考解答]习题6.4
4. 设 $A$ 是个不可约非负方阵, $0\leq t\leq 1$, 则 $$\bex \rho[tA+(1-t)A^T]\geq \rho(A). \eex$$       证明:   (1).
557 0
[詹兴致矩阵论习题参考解答]习题4.1
1. (Fan-Hoffman). 设 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 则 $$\bex \lm_j(\Re A)\leq s_j(A),\quad j=1,\cdots,n.
516 0
[詹兴致矩阵论习题参考解答]习题4.11
11. $M_n$ 上的范数 $\sen{\cdot}$ 称为是对称的, 若 $$\bex \sen{ABC}\leq \sen{A}_\infty\sen{C}_\infty \sen{B},\quad \forall\ A,B,C\in M_n.
584 0
[詹兴致矩阵论习题参考解答]习题4.17
17. (Ando-Zhan) 设 $A,B\in M_n$ 半正定, $\sen{\cdot}$ 是一个酉不变范数, 则 $$\bex \sen{(A+B)^r}\leq \sen{A^r+B^r},\quad (0
818 0
|
Perl
[詹兴致矩阵论习题参考解答]习题4.3
3. $G\in M_n$ 称为一个秩 $k$ 部分等距矩阵, 若 $$\bex s_1(G)=\cdots=s_k(G)=1,\quad s_{k+1}(G)=\cdots=s_n(G)=0. \eex$$ 证明对 $X\in M_n$, $$\bex \sum_{j=1}^k s_j(X) =\...
686 0
|
资源调度 前端开发 rax
[詹兴致矩阵论习题参考解答]习题4.10
10. 设 $A,B\in M_n$ 并且 $AB$ 为 Hermite 矩阵, 则对任何酉不变范数 $$\bex \sen{AB}\leq \sen{\Re(BA)}. \eex$$       证明: (1).
568 0