[詹兴致矩阵论习题参考解答]习题4.9

简介: 9. 设 $\sen{\cdot}$ 是 $M_n$ 上的酉不变范数, 则 $\sen{\cdot}$ 是次可乘当且仅当 $$\bex \sen{\diag(1,0,\cdots,0)}\geq 1. \eex$$       证明: $\ra$: 若 $\sen{\cdot}$ 次可乘, ...

9. 设 $\sen{\cdot}$ 是 $M_n$ 上的酉不变范数, 则 $\sen{\cdot}$ 是次可乘当且仅当 $$\bex \sen{\diag(1,0,\cdots,0)}\geq 1. \eex$$

 

 

 

证明: $\ra$: 若 $\sen{\cdot}$ 次可乘, 则 $$\beex \bea \sen{\diag(1,0,\cdots,0)} &=\sen{\diag(1,0,\cdots,0)\cdot \diag(1,0,\cdots,0)}\\ &\leq \sen{\diag(1,0,\cdots,0)}\cdot \sen{\diag(1,0,\cdots,0)}. \eea \eeex$$ 由 $$\bex \diag(1,0,\cdots,0)\neq 0\ra \sen{\diag(1,0,\cdots,0)}>0 \eex$$ 即知 $$\bex 1\leq \sen{\diag(1,0,\cdots,0)}. \eex$$ $\la$: 由第 11 题知 $$\bex \sen{ABC}\leq \sen{A}_\infty\sen{C}_\infty\sen{B},\quad\forall\ A,B,C\in M_n. \eex$$ 取 $C=I$ 有 $$\bex \sen{AB}\leq \sen{A}_\infty\sen{B},\quad \forall\ A,B\in M_n. \eex$$ 为证 $\sen{\cdot}$ 是次可乘的, 仅须验证 $$\bee\label{4_9_inf} \sen{A}_\infty\leq \sen{A},\quad \forall\ A\in M_n. \eee$$而 \eqref{4_9_inf} 可验证如下. 对 $A\in M_n$, 由奇异值分解, 存在酉阵 $U,V$ 使得 $$\bex UAV=\diag(s_1,\cdots,s_n). \eex$$ 于是 $$\beex \bea \sen{A}_\infty &=s_1\quad\sex{\mbox{可参考第 1 章第 13 题的证明}}\\ &\leq \sen{s_1\diag(1,0,\cdots,0)}\\ &\leq \sen{\diag(s_1,\cdots,s_n)}\quad\sex{ \sex{s_1,0,\cdots,0}\prec \sex{s_1,\cdots,s_n},\mbox{ 由 Fan 支配原理} }\\ &=\sen{A}. \eea \eeex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题6.15
15. (Hu-Li-Zhan) 秩为 $k$ 的 $n$ 阶对称 $0-1$ 矩阵中 $1$ 的个数可能是哪些数呢?       解答: 见 [Q. Hu, Y.Q. Li, X.Z. Zhan, Possible numbers of ones in $0-1$ matrices wit...
580 0
|
Perl
[詹兴致矩阵论习题参考解答]习题6.9
9. (Hopf) 将 $n$ 阶正矩阵 $A=(a_{ij})$ 的特征值按模从大到小排列为 $$\bex \rho(A)>|\lm_2|\geq \cdot \geq |\lm_n|, \eex$$ 并记 $$\bex \al=\max\sed{a_{ij};1\leq i,j\leq n}, \quad \beta=\min \max\sed{a_{ij};1\leq i,j\leq n}.
530 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.10
10. 非本原指标为 $k$ 的 $n$ 阶不可约非负矩阵的正元素的个数可能是哪些数呢?       解答: 只需利用定理 6.28 (Frobenius), 探讨 $$\bex f(x_1,\cdots,x_n)=\sum_{i=1}^n x_ix_{i+1} \eex$$ 在条件 $$\bex x_i>0,\quad\sum_{i=1}^n x_i=n \eex$$ 下的最小最大值.
605 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.7
7. 设 $A$ 是个非负幂零矩阵, 即存在正整数 $p$ 使得 $A^p=0$. 则 $A$ 置换相似于一个上三角矩阵.       证明: 由 $A^p=0$ 知 $\sigma(A)=0$, 而 $\rho(A)=0$.
767 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.8
8. 设 $A$ 是个不可约奇异 $M$-矩阵, 则存在正向量 $x$ 满足 $Ax=0$.       证明: 由 $A$ 为 $M$-矩阵知 $$\bex A=cI-B,\quad c\geq \rho(B),\quad B\geq 0.
627 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.4
4. (G.M. Krause) 令 $$\bex \lm_1=1,\quad \lm_2=\frac{4+5\sqrt{3}I}{13},\quad \lm_3=\frac{-1+2\sqrt{3}i}{13},\quad v=\sex{\sqrt{\frac{5}{8}},\frac{1}{2},\sqrt{\frac{1}{8}}}^T.
737 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题5.3
3. (Bhatia-Davis) 设 $A,B\in M_n$ 为酉矩阵, 则 $$\bex \rd(\sigma(A),\sigma(B))\leq \sen{A-B}_\infty. \eex$$     证明: [见 R.
687 0
|
机器学习/深度学习
[詹兴致矩阵论习题参考解答]习题4.4
4. 设 $A=(a_{ij})\in M_n$, 则 $$\bex \sex{|a_{11}|,\cdots,|a_{nn}|}\prec_ws(A). \eex$$       证明: 一般我们都用 Fan 支配原理的顺推情形: $$\bex s(A)\prec s(B)\lra \mbox{ 对任意酉不变范数 }\sen{\cdot},\ \sen{A}\leq \sen{B}.
646 0
[詹兴致矩阵论习题参考解答]习题4.16
16. (Fan-Hoffman) 设 $A\in M_n$, $A=UP$ 为极分解, $U$ 为酉矩阵, $P$ 为半正定矩阵. 若 $W\in M_n$ 为酉矩阵, 则 $$\bex \sen{A-U}\leq \sen{A-W}\leq \sen{A+U} \eex$$ 对任何酉不变范数成立.
621 0
[詹兴致矩阵论习题参考解答]习题4.2
2. (Thompson). 设 $A,B\in M_n$, 则存在酉矩阵 $U, V\in M_n$ 满足 $$\bex |A+B|\leq U|A|U^*+V|B|V^*. \eex$$       证明: (1).
773 0