[詹兴致矩阵论习题参考解答]习题6.6

简介: 6. 设 $A$ 是个非负本原方阵, 则 $$\bex \vlm{k} [\rho(A)^{-1}A]^k =xy^T, \eex$$ 其中 $x$ 和 $y$ 分别是 $A$ 和 $A^T$ 的 Perron 根, 满足 $xy^T=1$.

6. 设 $A$ 是个非负本原方阵, 则 $$\bex \vlm{k} [\rho(A)^{-1}A]^k =xy^T, \eex$$ 其中 $x$ 和 $y$ 分别是 $A$ 和 $A^T$ 的 Perron 根, 满足 $xy^T=1$.

 

 

 

证明: 由 $A$ 本原知 $A$ 的特征值为 $$\bex \rho(A)>|\lm_2|\geq \cdots |\lm_n|. \eex$$ 由 Jordan 标准型理论, 存在可逆阵 $T$, 使得 $$\bex T^{-1}AT=\sex{\ba{cc} \rho(A)&0\\ 0&B \ea}, \eex$$ 其中 $B$ 为上三角阵, 其对角元为 $\lm_2,\cdots,\lm_n$. 据此, $$\bex T^{-1}\frac{A}{\rho(A)}T=\sex{\ba{cc} 1&0\\ 0&\frac{B}{\rho(A)} \ea} \ra T^{-1}\sez{\frac{A}{\rho(A)}}^kT =\sex{\ba{cc} 1&0\\ 0&\sez{\frac{B}{\rho(A)}}^k \ea}. \eex$$ 据第 1 章第 2 题知 $$\bee\label{6_6_lim} \vlm{k}\sez{\frac{A}{\rho(A)}}^k =T\sex{\ba{cc} 1&0\\ 0&0\ea}T^{-1}. \eee$$设 $$\bex T=\sex{\ba{cc} a&r\\ c&C \ea},\quad T^{-1}=\sex{\ba{cc} a'&r'\\ c'&C' \ea}, \eex$$ 则 $$\bee\label{6_6_T} T\sex{\ba{cc} 1&0\\ 0&0 \ea}T^{-1}=\sex{\ba{cc} aa'&ar'\\ ca'&cr' \ea}=\sex{\ba{cc} a\\c \ea}\sex{\ba{cc} a'&r' \ea}. \eee$$又由 $$\bex AT=T\sex{\ba{cc} \rho(A)&0\\ 0&B \ea},\quad A^T(T^{-1})^T =(T^{-1})^T\sex{\ba{cc} \rho(A)&0\\ 0&B^T \ea} \eex$$ 知 $$\bee\label{6_6_xy} x=\sex{\ba{cc} a\\ c \ea},\quad y=\sex{\ba{cc} a'\\ r'^T \ea} \eee$$分别是 $A,A^T$ 的 Perron 根, 且据 $T^{-1}T=I$ 知 $$\bex 1=a'a+r'c=\sex{\ba{cc} a'&r' \ea}\sex{\ba{cc} a\\ c \ea} =y^Tx=x^Ty. \eex$$ 联合 \eqref{6_6_lim}, \eqref{6_6_T}, \eqref{6_6_xy}, 我们有 $$\bex \vlm{k} [\rho(A)^{-1}A]^k =xy^T. \eex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题6.4
4. 设 $A$ 是个不可约非负方阵, $0\leq t\leq 1$, 则 $$\bex \rho[tA+(1-t)A^T]\geq \rho(A). \eex$$       证明:   (1).
560 0
[詹兴致矩阵论习题参考解答]习题6.2
2. 设 $A$ 是个非负方阵且存在一个正整数 $p$ 使得 $A^p>0$, 则对所有正整数 $q\geq p$, $A^q>0$.       证明: 不妨设 $n\geq 2$. 由定理 6.
627 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.4
4. (G.M. Krause) 令 $$\bex \lm_1=1,\quad \lm_2=\frac{4+5\sqrt{3}I}{13},\quad \lm_3=\frac{-1+2\sqrt{3}i}{13},\quad v=\sex{\sqrt{\frac{5}{8}},\frac{1}{2},\sqrt{\frac{1}{8}}}^T.
742 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.5
5. (Friedland) 给定 $A\in M_n$, $\lm_i\in \bbC$, $i=1,\cdots,n$. 证明: 存在对角矩阵 $D\in M_n$ 使得 $\sigma(A+D)=\sed{\lm_1,\cdots,\lm_n}$, 并且满足上述条件的对角矩阵 $D$ 只有有限多个.
556 0
[詹兴致矩阵论习题参考解答]习题4.11
11. $M_n$ 上的范数 $\sen{\cdot}$ 称为是对称的, 若 $$\bex \sen{ABC}\leq \sen{A}_\infty\sen{C}_\infty \sen{B},\quad \forall\ A,B,C\in M_n.
585 0
[詹兴致矩阵论习题参考解答]习题4.5
5. 设 $A,B\in M_n$, 则 $$\bex s_j(AB)\leq \sen{A}_\infty s_j(B),\quad s_j(AB)\leq \sen{B}_\infty s_j(A),\quad j=1,\cdots,n.
547 0
[詹兴致矩阵论习题参考解答]习题3.13
13. (Caylay 变换) 记 $i=\sqrt{-1}$. 若 $A$ 为 Hermite 矩阵, 则 $$\bex \phi(A)=(A-iI)(A+iI)^{-1} \eex$$ 是一个酉矩阵.
657 0
|
移动开发 weex
[詹兴致矩阵论习题参考解答]习题3.5
5. 不用 Weierstrass 定理, 直接证明 Hermite 矩阵的函数运算 (3.6) 与特定的谱分解无关.     证明: 设 $H$ 也有谱分解 $$\bex H=V\diag(\lm_1,\cdots,\lm_n)V^*, \eex$$ 则 $$\bex W\diag(\lm_...
545 0
|
关系型数据库 RDS
[詹兴致矩阵论习题参考解答]习题3.9
9. 用公式 $$\bex t^r=\frac{\sin r\pi}{\pi}\int_0^\infty \frac{s^{r-1}t}{s+t}\rd s\quad \sex{00$ 的情形下证明结论如下.
630 0
[詹兴致矩阵论习题参考解答]习题3.3
3. (Aronszajn) 设 $$\bex C=\sex{\ba{cc} A&X\\ X^*&B \ea} \eex$$ 为 Hermite 矩阵, $C\in M_n$, $A\in M_k$. 设 $A,B,C$ 的特征值分别为 $\al_1\geq \cdots\geq \al_k$, $...
646 0