[詹兴致矩阵论习题参考解答]习题6.3

简介: 3. 设 $\lm$ 是一个复数. 证明: 存在非负方阵 $A$ 使得 $\lm$ 是 $A$ 的一个特征值.       证明:   (1). 首先 $A$ 的阶数须 $\geq 3$. 当 $n=1$ 时, 非负方阵的特征值为非负实数.

3. 设 $\lm$ 是一个复数. 证明: 存在非负方阵 $A$ 使得 $\lm$ 是 $A$ 的一个特征值.

 

 

 

证明:

 

(1). 首先 $A$ 的阶数须 $\geq 3$. 当 $n=1$ 时, 非负方阵的特征值为非负实数. 当 $n=2$ 时, 由 $$\beex \bea |\lm I-A|&=\lm^2 -(a_{11}+a_{22})\lm +a_{11}a_{22}-a_{21}a_{12}\\ &=\sez{\lm-\frac{a_{11}+a_{22}}{2}}^2 +a_{11}a_{22}-a_{21}a_{12} -\frac{ (a_{11}+a_{22})^2 }{4} \eea \eeex$$ 知非负方阵的特征值要么为实数, 要么为实部为非负实数的虚数.

 

(2). 仅须考虑 $n=3$ 的情形. 若此时, 已有非负矩阵 $A$ 以 $z$ 为特征值, 则当 $n\geq 3$ 时, $$\bex \sex{\ba{cc} A&0\\ 0&O \ea}_{n,n} \eex$$ 就是一个以 $z$ 为特征值的 $n$ 阶非负方阵.

 

(3). 当 $n=3$ 时, 由于实矩阵的虚特征值是成对出现, 仅须考虑 $$\bex z=a+bi\quad (b\geq 0) \eex$$ 的情形. 当 $a\geq 0$ 时, 把 $z$ 写成 $$\beex \bea z&=a+bi\\ &=\tilde a+\tilde bw\quad\sex{w=e^{i\frac{2\pi}{3}},\quad \tilde a=a+\frac{b}{\sqrt{3}}\geq 0, \tilde b=\frac{2b}{\sqrt{3}}\geq 0} \eea \eeex$$ 而是 $$\bee\label{6_3_eq} \tilde a I_3+\tilde b\cdot \Circ(0,1,0) \eee$$ 的特征值 (参考本书第 3-4 页). 当 $a<0$ 时, 若 $\tilde a\geq 0$, 则仍用 \eqref{6_3_eq}. 但若 $\tilde a<0$, 则 $z$ 是 $$\bex \sex{\ba{ccc} 0&-\tilde a&-\tilde a\\ -\tilde a&0&-\tilde a\\ -\tilde a&-\tilde a&0 \ea}+\tilde b\cdot\Circ(0,1,0) \eex$$ 的特征值.

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.2
2. 证明引理 7.13.       证明: 用反证法. 若对任一置换阵 $P$, $PA$ 的对角元都至少有一个为零, 则 $A$ 的每条对角线至少含有一个零元素. 由 Frobenius-K\"onig 定理, $A$ 有一个 $r\times s$ 阶的零子矩阵, $r+s=n+1$.
638 0
[詹兴致矩阵论习题参考解答]习题6.11
11. (Gasca-Pena) 一个 $n$ 阶可逆矩阵 $A$ 是全面非负的当且仅当对每个 $1\leq k\leq n$, $$\bex \det A[1,2,\cdots,k]>0, \eex$$ $$\bex \det A[\al\mid 1,2,\cdots,k]\geq 0,\quad...
573 0
[詹兴致矩阵论习题参考解答]习题6.13
13. (Sinkhorn) 设 $A$ 是一个方的正矩阵, 则存在对角元素为正数的两个对角矩阵 $D_1$ 和 $D_2$ 使得 $D_1AD_2$ 为双随机矩阵 (doubly stochastic matrix).
599 0
|
资源调度 机器学习/深度学习 Perl
[詹兴致矩阵论习题参考解答]习题7.5
5. 元素属于 $\sed{0,*}$ 的矩阵称为零模式矩阵. 设 $A$ 是零模式矩阵, 用 $Q_\bbF(A)$ 记元素属于域 $\bbF$ 的具有零模式 $A$ 的矩阵的集合, 即若 $B\in Q_F(A)$, $B=(b_{ij})$, $A=(a_{ij})$, 则 $b_{ij}=0$ 当且仅当 $a_{ij}=0$.
705 0
|
vr&ar
[詹兴致矩阵论习题参考解答]习题6.6
6. 设 $A$ 是个非负本原方阵, 则 $$\bex \vlm{k} [\rho(A)^{-1}A]^k =xy^T, \eex$$ 其中 $x$ 和 $y$ 分别是 $A$ 和 $A^T$ 的 Perron 根, 满足 $xy^T=1$.
546 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.1
1. 怎样的非负矩阵可逆并且其逆也非负?       解答: 设 $A\geq0$ 可逆, 且其逆 $A^{-1}=B\geq 0$. 则 $$\bex I_n=AB=BA. \eex$$ 对 $A$ 的第 $i$ ($1\leq i\leq n$) 列, 由 $A$ 可逆知 $$\bex \exists\ j,\st a_{ij}>0.
521 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.7
7. 设 $A$ 是个非负幂零矩阵, 即存在正整数 $p$ 使得 $A^p=0$. 则 $A$ 置换相似于一个上三角矩阵.       证明: 由 $A^p=0$ 知 $\sigma(A)=0$, 而 $\rho(A)=0$.
771 0
|
Perl
[詹兴致矩阵论习题参考解答]习题5.2
2. 用 $\im A$ 表示 $A\in M_n$ 的像空间: $$\bex \im A=\sed{Ax;x\in\bbC^n}. \eex$$ 设 $A,B\in M_n$ 为正交投影矩阵, 满足 $$\bex \sen{A-B}_\infty
567 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题5.3
3. (Bhatia-Davis) 设 $A,B\in M_n$ 为酉矩阵, 则 $$\bex \rd(\sigma(A),\sigma(B))\leq \sen{A-B}_\infty. \eex$$     证明: [见 R.
689 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.4
4. (G.M. Krause) 令 $$\bex \lm_1=1,\quad \lm_2=\frac{4+5\sqrt{3}I}{13},\quad \lm_3=\frac{-1+2\sqrt{3}i}{13},\quad v=\sex{\sqrt{\frac{5}{8}},\frac{1}{2},\sqrt{\frac{1}{8}}}^T.
739 0