[詹兴致矩阵论习题参考解答]习题4.4

简介: 4. 设 $A=(a_{ij})\in M_n$, 则 $$\bex \sex{|a_{11}|,\cdots,|a_{nn}|}\prec_ws(A). \eex$$       证明: 一般我们都用 Fan 支配原理的顺推情形: $$\bex s(A)\prec s(B)\lra \mbox{ 对任意酉不变范数 }\sen{\cdot},\ \sen{A}\leq \sen{B}.

4. 设 $A=(a_{ij})\in M_n$, 则 $$\bex \sex{|a_{11}|,\cdots,|a_{nn}|}\prec_ws(A). \eex$$

 

 

 

证明: 一般我们都用 Fan 支配原理的顺推情形: $$\bex s(A)\prec s(B)\lra \mbox{ 对任意酉不变范数 }\sen{\cdot},\ \sen{A}\leq \sen{B}. \eex$$ 而这里我们却要用逆推情形. 由此可见 Fan 的伟大. 记 $$\bex \omega=e^{\frac{2\pi i}{n}},\quad i=\sqrt{-1},\quad U=\diag(1,\omega,\omega^2,\cdots,\omega^{n-1}), \eex$$ 则 $U$ 为酉阵, 且 $$\bee\label{4_4_diag} \diag(a_{11},\cdots,a_{nn})=\frac{1}{n} \sum_{k=0}^{n-1} U^kAU^{*k}. \eee$$\eqref{4_4_diag} 可通过比较矩阵的各元素得到. 事实上, \eqref{4_4_diag} 右端矩阵的 $(i,j)$ 元素为 $$\beex \bea \frac{1}{n}\sum_{k=0}^{n-1} \omega^{ik} a_{ij}\bar \omega^{jk} &=\frac{1}{n}\sum_{k=0}^n \omega^{ik}\bar \omega^{jk}a_{ij}\\ &=\sedd{\ba{ll} a_{ii},&i=j\\ \cfrac{1}{n}\dps{\sum_{k=0}^{n-1} \omega^{(i-j)k} a_{ij}} =\cfrac{1}{n}\cdot\cfrac{1-\omega^{(i-j)n}}{1-\omega^{i-j}}a_{ij}=0,&i\neq j \ea}\\ &=a_{ij}\delta_{ij}. \eea \eeex$$ 由 \eqref{4_4_diag} 即知对任一酉不变范数 $\sen{\cdot}$, $$\bex \sen{\diag(a_{11},\cdots,a_{nn})} \leq \frac{1}{n}\sum_{k=0}^{n-1} \sen{U^kAU^{*k}}=\sen{A}. \eex$$ 据 Fan 支配原理, $$\bex \sex{|a_{11}|,\cdots,|a_{nn}|}\prec_ws(A). \eex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.3
3. 一个 $n$ 阶符号模式方阵 $A$ 称为谱任意模式, 如果每个首一的 $n$ 次实多项式都是 $Q(A)$ 中某个矩阵的特征多项式. 研究谱任意模式.       证明: Open problems.
546 0
[詹兴致矩阵论习题参考解答]习题7.2
2. 证明引理 7.13.       证明: 用反证法. 若对任一置换阵 $P$, $PA$ 的对角元都至少有一个为零, 则 $A$ 的每条对角线至少含有一个零元素. 由 Frobenius-K\"onig 定理, $A$ 有一个 $r\times s$ 阶的零子矩阵, $r+s=n+1$.
655 0
[詹兴致矩阵论习题参考解答]习题6.11
11. (Gasca-Pena) 一个 $n$ 阶可逆矩阵 $A$ 是全面非负的当且仅当对每个 $1\leq k\leq n$, $$\bex \det A[1,2,\cdots,k]>0, \eex$$ $$\bex \det A[\al\mid 1,2,\cdots,k]\geq 0,\quad...
577 0
[詹兴致矩阵论习题参考解答]习题6.15
15. (Hu-Li-Zhan) 秩为 $k$ 的 $n$ 阶对称 $0-1$ 矩阵中 $1$ 的个数可能是哪些数呢?       解答: 见 [Q. Hu, Y.Q. Li, X.Z. Zhan, Possible numbers of ones in $0-1$ matrices wit...
588 0
[詹兴致矩阵论习题参考解答]习题6.2
2. 设 $A$ 是个非负方阵且存在一个正整数 $p$ 使得 $A^p>0$, 则对所有正整数 $q\geq p$, $A^q>0$.       证明: 不妨设 $n\geq 2$. 由定理 6.
642 0
|
vr&ar
[詹兴致矩阵论习题参考解答]习题6.6
6. 设 $A$ 是个非负本原方阵, 则 $$\bex \vlm{k} [\rho(A)^{-1}A]^k =xy^T, \eex$$ 其中 $x$ 和 $y$ 分别是 $A$ 和 $A^T$ 的 Perron 根, 满足 $xy^T=1$.
555 0
|
Perl
[詹兴致矩阵论习题参考解答]习题6.9
9. (Hopf) 将 $n$ 阶正矩阵 $A=(a_{ij})$ 的特征值按模从大到小排列为 $$\bex \rho(A)>|\lm_2|\geq \cdot \geq |\lm_n|, \eex$$ 并记 $$\bex \al=\max\sed{a_{ij};1\leq i,j\leq n}, \quad \beta=\min \max\sed{a_{ij};1\leq i,j\leq n}.
540 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题5.3
3. (Bhatia-Davis) 设 $A,B\in M_n$ 为酉矩阵, 则 $$\bex \rd(\sigma(A),\sigma(B))\leq \sen{A-B}_\infty. \eex$$     证明: [见 R.
708 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.4
4. (G.M. Krause) 令 $$\bex \lm_1=1,\quad \lm_2=\frac{4+5\sqrt{3}I}{13},\quad \lm_3=\frac{-1+2\sqrt{3}i}{13},\quad v=\sex{\sqrt{\frac{5}{8}},\frac{1}{2},\sqrt{\frac{1}{8}}}^T.
748 0
[詹兴致矩阵论习题参考解答]习题4.16
16. (Fan-Hoffman) 设 $A\in M_n$, $A=UP$ 为极分解, $U$ 为酉矩阵, $P$ 为半正定矩阵. 若 $W\in M_n$ 为酉矩阵, 则 $$\bex \sen{A-U}\leq \sen{A-W}\leq \sen{A+U} \eex$$ 对任何酉不变范数成立.
630 0