武汉大学2015年数学分析考研试题

简介: 一. 计算题 ($40'$)   1. $\dps{\lim_{x\to 1}\frac{(x^n-1)(x^{n-1}-1)\cdots(x^{n-k+1}-1)}{(x^1-1)(x^2-1)\cdots (x^k-1)}}$.

一. 计算题 ($40'$)

 

1. $\dps{\lim_{x\to 1}\frac{(x^n-1)(x^{n-1}-1)\cdots(x^{n-k+1}-1)}{(x^1-1)(x^2-1)\cdots (x^k-1)}}$.

 

2. $\dps{\lim_{x\to0}\frac{ \sqrt[n]{\cos \al x}-\sqrt[m]{\cos\beta x}}{\sin^2x}}$, 其中 $m,n$ 为正整数.

 

 

3. $\dps{\vlm{n}\sum_{k=1}^n \sez{\sqrt{1+\frac{k^2}{n^3}}-1}}$.

 

 

4. 设 $$\bex 0<x_n\leq x_{n+1}+\frac{1}{n^2}, \eex$$ 讨论极限 $\dps{\vlm{n}x_n}$ 的存在性.

 

 

二. ($20'$) 给定曲面 $$\bex F\sex{\frac{x-a}{z-c},\frac{y-b}{z-c}}=0, \eex$$ 其中 $a,b,c$ 为常数, $u=F(s,t)$ 二阶连续可微, 梯度处处不为零. 证明:

(1). 曲面的切平面过一定点.

(2). 函数 $z=z(x,y)$ 满足 $$\bex \frac{\p^2z}{\p x^2}\frac{\p^2z}{\p y^2}-\sex{\frac{\p^2z}{\p x\p y}}^2=0. \eex$$

 

 

三. ($20'$) 设 $$\bex a_n>0,\quad \vlm{n}n\sex{\frac{a_n}{a_{n+1}}-1}=\lm>0. \eex$$ 试证: $\dps{\vsm{n}(-1)^{n-1}a_n}$ 收敛.

 

 

四. ($15'$) 求极限 $$\bex \lim_{t\to +\infty}e^{-t} \int_0^t\int_0^t \frac{e^x-e^y}{x-y}\rd x\rd y, \eex$$ 或证明此极限不存在.

 

 

五.

(1). 求积分 $$\bex \iint_D |\cos (x+y)|\rd x\rd y, \eex$$ 其中 $$\bex D:\ 0\leq x\leq \pi,\ 0\leq y\leq \pi. \eex$$

(2). 设 $0<\al<1$, 求积分 $\dps{\int_0^1 f(t^\al)\rd t}$ 的上确界, 其中连续函数 $f$ 满足 $$\bex \int_0^1 |f(t)|\rd t\leq 1. \eex$$

 

 

六. ($25'$) 设 $$\bex f(t)=\int_1^{+\infty} \frac{\cos xt}{1+x^2}\rd x. \eex$$ 证明:

(1). 积分在 $\bbR$ 上一致收敛.

(2). $\dps{\vlm{t}f(t)=0}$.

(3). $f(t)$ 在 $\bbR$ 上一致连续.

(4). $\dps{\int_0^\pi f(t)\sin t\rd t\leq0}$.

(5). $\exists\ \xi \in [0,\pi],\st f(\xi)=0$. 

 

参考解答见家里蹲大学数学杂志.

目录
相关文章
日期累加(北京理工大学考研机试题)
日期累加(北京理工大学考研机试题)
56 0
日期累加(北京理工大学考研机试题)
成绩排序2 (清华大学考研机试题)
成绩排序2 (清华大学考研机试题)
45 0
成绩排序2 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
59 0
成绩排序 (清华大学考研机试题)
|
机器学习/深度学习
[家里蹲大学数学杂志]第034期中山大学2008年数学分析考研试题参考解答
1  (每小题6分,共48分)  (1) 求$\lim\limits_{x \to 0+}x^x;$ 解答:  $$\begin{eqnarray*}\textrm{ 原式} & = & \lim\limits_{x \to 0+}e^{x\ln x} = \lim\limits_{x \to ...
736 0
|
Perl
[再寄小读者之数学篇](2014-04-20 [浙江大学 2014 年高等代数考研试题] 相似于对角阵的一个充分条件)
设 ${\bf X},{\bf Y}$ 分别为 $m\times n$ 与 $n\times m$ 阵, 且 $$\bex {\bf Y}{\bf X}={\bf E}_n,\quad {\bf A}={\bf E}_m+{\bf X}{\bf Y}.
648 0
|
Perl
浙江大学2009年数学分析考研试题第7题参考解答
题目. 设 $f(x)$ 在 $[a,b]$上 可导, 导函数 $f'(x)$ 在 $[a,b]$ 上单调下降, 且 $f'(b)>0$. 证明: \[ \sev{\int\limits_a^b\cos f(x)\rd x}\leq \frac{2}{f'(b)}.
593 0
|
Perl
[再寄小读者之数学篇](2014-04-20 [苏州大学数学专业考研复试试题] 解析函数有特定表达式的一个充分条件)
设 $f$ 在 $D=\sed{z\in\bbC;\ |z|\leq 1}$ 上除点 $z_0\in D$ 外处处解析, 且满足 (1) 在 $D$ 内 $f$ 没有零点; (2) $z\in \p D\ra f(z)\in \p D$; (3) $z_0$ 是 $f$ 的一阶极点.
611 0
|
机器学习/深度学习
[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]行列式的计算)
(2014-04-18 from 352558840@qq.com [南开大学2014年高等代数考研试题]) 设 $n$ 阶行列式 $\sev{\ba{cccc} a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nn} \ea}=1,$ 且满足 $a_{ij}=-a_{ji}, i,j=1,2,\cdots,n$.
941 0

热门文章

最新文章