[再寄小读者之数学篇](2014-04-20 [苏州大学数学专业考研复试试题] 解析函数有特定表达式的一个充分条件)

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 设 $f$ 在 $D=\sed{z\in\bbC;\ |z|\leq 1}$ 上除点 $z_0\in D$ 外处处解析, 且满足 (1) 在 $D$ 内 $f$ 没有零点; (2) $z\in \p D\ra f(z)\in \p D$; (3) $z_0$ 是 $f$ 的一阶极点.

设 $f$ 在 $D=\sed{z\in\bbC;\ |z|\leq 1}$ 上除点 $z_0\in D$ 外处处解析, 且满足

(1) 在 $D$ 内 $f$ 没有零点;

(2) $z\in \p D\ra f(z)\in \p D$;

(3) $z_0$ 是 $f$ 的一阶极点.

证明: $$\bex \exists\ \tt\in \bbR,\st f(z)=e^{i\tt}\cfrac{1-\bar z_0z}{z-z_0}. \eex$$

证明: 记 $$\bex \phi(\zeta)=\cfrac{z_0-\zeta}{1-\bar z_0\zeta},\quad F=f\circ \phi, \eex$$ 则 $\phi^{-1}=\phi$. 由 (1) 及 (3), $\cfrac{1}{F(\zeta)}$ 在 $D$ 内解析, 且以 $0$ 为一阶零点. 再据 (2) 及边界对应定理, $\cfrac{1}{F(z)}:D\to D$. 由 Schwarz 引理 (及其证明), $$\beex \bea \exists\ \tt\in\bbR,\st \cfrac{1}{F(\zeta)}&=e^{-i(\tt+\pi)}\zeta,\\ f(\phi(\zeta))&=e^{-i(\tt+\pi)}\cfrac{1}{\zeta},\\ f(z)&=e^{i(\tt+\pi)}\cfrac{1}{\phi(z)} =-e^{i\tt}\cfrac{1-\bar z_0z}{z_0-z} =e^{i\tt}\cfrac{1-\bar z_0z}{z-z_0}. \eea \eeex$$ 

 

目录
相关文章
|
2月前
|
存储 前端开发 JavaScript
前端基础(十二)_函数高级、全局变量和局部变量、 预解析(变量提升)、函数返回值
本文介绍了JavaScript中作用域的概念,包括全局变量和局部变量的区别,预解析机制(变量提升),以及函数返回值的使用和类型。通过具体示例讲解了变量的作用域、函数的返回值、以及如何通过return关键字从函数中返回数据。
23 1
前端基础(十二)_函数高级、全局变量和局部变量、 预解析(变量提升)、函数返回值
|
1月前
|
数据格式
常用的Lambda表达式案例解析,工作中都会用到!
常用的Lambda表达式案例解析,工作中都会用到!
|
1月前
|
存储
atoi函数解析以及自定义类型经典练习题
atoi函数解析以及自定义类型经典练习题
37 0
|
1月前
|
数据处理 Python
深入探索:Python中的并发编程新纪元——协程与异步函数解析
深入探索:Python中的并发编程新纪元——协程与异步函数解析
27 3
|
1月前
|
机器学习/深度学习 算法 C语言
【Python】Math--数学函数(详细附解析~)
【Python】Math--数学函数(详细附解析~)
|
1月前
|
存储 Java 开发者
【编程基础知识】 计算机中的数学魔法:二进制加减运算全解析
本文深入解析了计算机中二进制加减运算的原理,涵盖原码、反码和补码的概念及应用,结合具体示例,帮助读者理解计算机底层数学运算机制,适合Java开发者学习。
43 0
|
2月前
|
存储 Serverless C语言
【C语言基础考研向】11 gets函数与puts函数及str系列字符串操作函数
本文介绍了C语言中的`gets`和`puts`函数,`gets`用于从标准输入读取字符串直至换行符,并自动添加字符串结束标志`\0`。`puts`则用于向标准输出打印字符串并自动换行。此外,文章还详细讲解了`str`系列字符串操作函数,包括统计字符串长度的`strlen`、复制字符串的`strcpy`、比较字符串的`strcmp`以及拼接字符串的`strcat`。通过示例代码展示了这些函数的具体应用及注意事项。
131 7
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
掌握 PyTorch 张量乘法:八个关键函数与应用场景对比解析
PyTorch提供了几种张量乘法的方法,每种方法都是不同的,并且有不同的应用。我们来详细介绍每个方法,并且详细解释这些函数有什么区别:
64 4
掌握 PyTorch 张量乘法:八个关键函数与应用场景对比解析
|
3月前
|
Java API
Java 8新特性:Lambda表达式与Stream API的深度解析
【7月更文挑战第61天】本文将深入探讨Java 8中的两个重要特性:Lambda表达式和Stream API。我们将首先介绍Lambda表达式的基本概念和语法,然后详细解析Stream API的使用和优势。最后,我们将通过实例代码演示如何结合使用Lambda表达式和Stream API,以提高Java编程的效率和可读性。
|
2月前
|
设计模式 存储 算法
PHP中的设计模式:策略模式的深入解析与应用在软件开发的浩瀚海洋中,PHP以其独特的魅力和强大的功能吸引了无数开发者。作为一门历史悠久且广泛应用的编程语言,PHP不仅拥有丰富的内置函数和扩展库,还支持面向对象编程(OOP),为开发者提供了灵活而强大的工具集。在PHP的众多特性中,设计模式的应用尤为引人注目,它们如同精雕细琢的宝石,镶嵌在代码的肌理之中,让程序更加优雅、高效且易于维护。今天,我们就来深入探讨PHP中使用频率颇高的一种设计模式——策略模式。
本文旨在深入探讨PHP中的策略模式,从定义到实现,再到应用场景,全面剖析其在PHP编程中的应用价值。策略模式作为一种行为型设计模式,允许在运行时根据不同情况选择不同的算法或行为,极大地提高了代码的灵活性和可维护性。通过实例分析,本文将展示如何在PHP项目中有效利用策略模式来解决实际问题,并提升代码质量。

热门文章

最新文章

推荐镜像

更多