计算字符串相似度算法—Levenshtein

简介: 什么是LevenshteinLevenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

什么是Levenshtein

Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。levenshtein() 函数返回两个字符串之间的 Levenshtein 距离。编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance

实现过程

首先我们明确从一个字符串变化到另一个字符串需要进行添加、修改、删除来变化

如a变化到ab需要一步,添加一个b,

   aa变化到ab需要修改一个a到b,

   ab变化到a需要删除一个b。

 

首先我们确定了两个字符串str1,str2;假设这两个字符为a1a2a3a4......,b1b2b3......

那么构建一个二维矩阵

        空   a1  a2  a3  a4 ......

空     [1]   [2]   [3]   [4]     [5]......

b1    [6]   [7]   [8]   [9]     [10]......

b2    [11]  [12]  [13] [14]   [15]......

b3    [16] [17]   .......

...     

1.判断[1]左边为空,上面为空,从空到空需要变化0次

2.所以可以得到下面的矩阵

        空   a1  a2  a3  a4 ......

空     0      1      2      3       4......

b1    1      [7]   [8]   [9]     [10]......

b2    2       [12]  [13] [14]   [15]......

b3    3      [17]   .......

 .......

3.到7的位置表示了[空a1]变化到[空b1],这里我们需要得到三个值

    1)从[2]变化到[7]需要的步数是[2]+1

    2)从[6]变化到[7]需要的变化是[6]+1

    3) 从[1]变化到[7]需要的变化是 ,如果a1=b1,那么需要0步,如果a1!=b1,那么需要删除一个a1在添加一个b1,需要2步,也就是大于1步。

我们取这三步中所需走的最短步数填到[7]的位置   。

4.以此推得到

    Amn的值为Am-1n+1,Amn-1+1,Am-1n-1+x(当am=bn时x=0,否则x=2)的最小值

5.当求得的值的最后一位得到的值N,用1-n/(max(len(a),len(b)))得到相关度。 

实现代码 

复制代码
 /// <summary>
        /// Levenshtein 算法实现  
        /// </summary>
        /// <param name="value1"></param>
        /// <param name="values2"></param>
        /// <returns></returns>
        public static float Leven(string value1, string value2)
        { 
            int len1 = value1.Length;
            int len2 = value2.Length;
            int [,] dif =new int[len1+1,len2+1];
            for (int a=0;a<=len1;a++)
            {
                dif[a,0] = a; 
            }
            for (int a = 0; a <= len2; a++)
            {
                dif[0, a] = a; 
            }
            int temp =0;
            for (int i = 1; i <= len1; i++)
            {
                for (int j = 1; j <= len2; j++)
                {
                    if (value1[i - 1] == value2[j - 1])
                    { temp = 0; }
                    else
                    {
                        temp = 1;
                    }
                    dif[i,j] = Min(dif[i - 1,j - 1] + temp, dif[i,j - 1] + 1,
                        dif[i - 1,j] + 1);
                }
            }

            float similarity=1- (float)dif[len1, len2]/Math.Max(len1,len2);
            return similarity;
        }

        public static int Min(int a, int b, int c)
        {
            int i = a < b ? a : b;
            return i = i < c ? i : c;
        }
复制代码

 

目录
相关文章
|
1月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
59 0
|
1月前
|
算法
两个字符串匹配出最长公共子序列算法
本文介绍了最长公共子序列(LCS)问题的算法实现,通过动态规划方法求解两个字符串的最长公共子序列,并提供了具体的编程实现细节和示例。
73 1
两个字符串匹配出最长公共子序列算法
|
1月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
57 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
2月前
|
算法 C++
如何精确计算出一个算法的CPU运行时间?
如何精确计算出一个算法的CPU运行时间?
|
2月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
2月前
|
自然语言处理 算法
NLP之距离算法Levenshtein
NLP之距离算法Levenshtein
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。