算法书籍收藏

简介: 1. CLRS 算法导论算法百科全书,只做了前面十几章的习题,便感觉受益无穷。2. Algorithms 算法概论短小精悍,别据一格,准经典之作。一个坏消息: 同算法导论,该书没有习题答案。好消息:习题很经典,难度也适中,只需花点点时间自己也都能做出来。

1. CLRS 算法导论
算法百科全书,只做了前面十几章的习题,便感觉受益无穷。

2. Algorithms 算法概论
短小精悍,别据一格,准经典之作。一个坏消息: 同算法导论,该书没有习题答案。好消息:习题很经典,难度也适中,只需花点点时间自己也都能做出来。不好也不坏的消息:我正在写习题的答案,已完成前三章,还剩九章约二百道题,顺利的话二个月之后发布。另有中文版名《算法概论》,我没看过,不知道翻译得怎么样。如果有心的话,还是尽量看原版吧,其实看原版与看中文版花费时间不会相差很大,因为大部分时间其实都花费在做习题上了。

3. Algorithm Design 算法设计
很经典的一本书,很久之前看的,遗憾的是现在除了就记得它很经典之外其它都忘光了。

4. SICP 计算机程序的构造和解释
六星之书无需多言,虽然这不是一本讲算法的书,但看完此书有助于你更深入的理解什么是递归。我一直很强调习题,看完此书后你至少应该做完前四章的太部分习题。否则那是你的遗憾,也是作者的遗憾。

5. Concrete Mathematics 具体数学 
有人说看TAOCP之前应该先弄清楚这本书的内容,要真是如此的话那我恐怕是看不到TAOCP了。零零碎碎的看了一大半,很多东西都没有时间来好好消化。如果你是刚进大学不久的本科生,有着大把的可自由支配时间,那你幸运又幸福了,花上几个月时间好好的读一下此书吧,收获绝对大于你的期望值。

6. Introduction to The Design and Analysis of Algorithms 算法设计与分析基础
很有趣的一本算法书,有许多在别的书上找不到的趣题,看完此书绝对能让你大开眼界,实在是一本居家旅行,面试装逼的必备佳作。

7. 编程之美--微软技术面试心得 
虽说是一本面试书,但如果把前面十几页扯掉的话,我更愿意把它看作是一本讲解题思维的算法小品。在书中,作者通常是给出一个平常解法,然后再一次又一次的优化改进,你可以很清楚的看到基本的算法设计思想是如何得到运用以解决实际问题的。如果你已经有了一些算法的基础,看完本书应该能使你的算法应用能力得到一定的提高。另外,本书生动有趣,也同样适合于初学者。

8. Fundamentals of Algorithmics 算法基础 
也是很久之前在学校图书馆借来看的,内容记不太清楚了,只隐约记得此书的动态规划章节犹为出彩。应该是很经典的一本书,个人以为足以和算法导论等所谓当世经典平分秋色,但是怎么好像被人提到的不多,或许是我孤陋寡闻了。

9. How to solve it 怎样解题
二十世纪最伟大的数学思想家之一波利亚的力作,讲一般性的解题方法:怎么认识问题,怎么转换问题,怎么解决问题,如何在问题中得到启发,如何找到一个通往答案的方向。

10. Programming interviews exposed 程序员面试攻略
一本消遣之作。个人以为要比国内的某“XXX面试宝典”纯粹一些,至少也有一些启发性的内容,而不单单是面试题解库。

11. Programming Pearls 编程珠玑
学习算法不仅需要像Alogrithms,算法导论这样的重量级的内功心法,像《编程之美》、《编程珠玑》这样的轻量级的轻功身法也必不可少。前些年网上不是很流行像“给你10亿个数,找到最大的n个”或者“给你10亿个数,找出现次数最多的那个数”之类的百度面试题吗?看了此书你就知道怎么解决了。相比于《编程之美》来说,本书中的示例技巧性略低一些,但是也更有实际应用价值一些。

12. 算法艺术与信息学竞赛 
如果算法导论是九阳神功,那这本无疑就是九阴真经。本书是专为参加一些诸如ACM之类程序设计比赛的同学而写的,江湖人称“黑书”。里面讲的都是一些在编程比赛中常用的算法、数据结构,以及一些数论和计算几何等。我虽然并不搞竞赛,但也从此书中受益颇多。

13. An Introduction to Probability Theory and Its Applications
准备看的,现在才发现概率论有多么重要,可惜本科的时候没有好好学。前不久一个同学问我个问题,我半天弄了一个程序给他,他说:这里就不是相关系数么,Excel一下就完事!我晕,我还真不知道那就是相关系数。

14. Numerical Analysis
这本的作者是Richard L. Burden,J. Douglas Faires 
数值分析,讨论各种数值算法,比如插值、拟合、积分、微分方程的求解、线性和非线性方程组求解等。准备详细看。

15. TAOCP 计算机程序设计艺术

传说中的TAOCP,说的人多,看的人少。TAOCP四卷堪称是算法藏经阁中的易筋经或者是少林七十二绝技。天下武学,尽出少林,天下算法,尽出TAOCP也。这点你可以顺便翻开一本算法书看看他的引用文献就知道了。我只读了第四卷的部分章节,前三卷暂时还没敢看,还在读书计划表中被无限期搁置。

 

相关文章
|
8月前
|
SQL 算法 NoSQL
三面头条,靠P9级算法大牛分享的两本算法pdf书籍,轻松拿到offer
头条一面(Java+项目) 1.倒排索引 2.讲讲redis里面的哈希表? 3.happen-before的规则? 4.volatile修饰符,synchronize锁 5.java单例模式的实现,懒汉、饿汉? 6.进程与线程的区别,多进程和多线程的区别?
|
6天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
6天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
15天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
28天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
168 80
|
16天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
16天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
14天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
13天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
22天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。

热门文章

最新文章