从整个机器视觉的领域来讲,它是处在快速的重构期,通过市场分析来看,机器视觉并不是特别新兴的领域,这从最早图像处理衍生到现在,市场上有很多大的厂商对智能安防和交通做了很久的深耕,他们最开始不是做机器视觉、人脸识别起家的,在这几个行业中很多厂商都处于并驾齐驱、快速发展阶段。
现在很多业界人士都对强人工智能和弱人工智能有很清晰的定义,其实强的人工智能还是存在比较遥远的探索阶段,它是关于自我意识方面比较深层次的探索, 我们关注最多的是弱的人工智能。整个人工智能产业链进行详细分析。整个产业链定位分为三个层次:
第一是最下层的基础设施层,很多的机器视觉,包括语音识别需要很多的算法、硬件计算平台和一些软件的开发平台,还有刚才说的图像库资源,包括语音识别库资源,都是有基础设施层的布局。
第二个是技术研发层面,涵盖了包括机器学习、语音识别和机器视觉,还有智能机器人等三到四个重要的纬度,其中汉柏科技,在机器视觉领域做得就非常出色。
第三个是应用层,在人工智能产业行业应用最主要几个应用领域中,机器视觉的应用领域非常深、非常多,从整个产业链的全景图来讲,中国的人工智能产业处在快速的生态的构建期。
通过对产业全景图梳理的大体的框架可以看到,整个人工智能全产业链包括基础设施、技术研发和应用层三个层面。
通过对整个基础设施层的深入剖析,包括一些重点厂商和重点行业应用,其实可以看到,基础设施层存在问题。现在很多的传感器,包括一些机器视觉的识别,它的多元数据是很难融合,去协同的,它的数据不能对多元化协同开发,还存在着一定的障碍,这是目前在基础设施层存在的一些问题。我们认为未来的突破,一个是软件算法的快速迭代、快速的更新。在这个层面上中国其实是跟全世界很多国家一样,都处在非常相似的起跑线上,大家对这个算法的突破能力都是非常强的。在软件算法层面是我们未来的重要突破方向。另一方面就是硬件的计算芯片,这是未来的主攻方向,尤其是现在最热门的AI芯片,这是未来重点发展方向。
简单分析一下目前主流的计算芯片包括GPU,这包括服务器,还有边缘计算,基本上都用这两类计算芯片完成人工智能,包括机器视觉整个运算能力。从整个趋势来讲,基本上分为两个特征,就是云端会存在高吞吐,本地化存在小快灵的特征。这是什么意思呢?现在很多的机器视觉、很多的数据源汇总到云端需要占用大量网络带宽,这对我们提出很严峻的挑战,交通、安防数据都需要通过云端处理,业界同行都认为未来的趋势,就是需要将这种运算的功能边缘化,当然提供一些时延必须要低,这是未来主要的方向,本地的移动化AI芯片。
当然这是技术研发层层面,其实核心的问题就是一点,机器学习是推动了整个计算机视觉的精度,包括效率的提升,这是在机器学习领域对整个计算机视觉重要的突破性影响。
分析应用层场景发现机器视觉对硬件推动非常明显,比如说无人机,可能最早不具备机器视觉,例如大疆无人机,它推出智能避障,现在添加了是为了提升产品的性价比。
通过分析在应用层的产品存在的问题,我们认为机器视觉未来的突破领域,也是刚才说的,还有就是三维的视觉重建,这当然是技术视觉的算法层面。另一方面未来的无人设备,将会是一个非常重要的突破点。