带你读《创新之巅: 未来十年重构商业的六大战略性技术》第一章未来十年重构商业的 六大技术1.4超越深度学习:人工智能的未来…

简介: 带你读《创新之巅: 未来十年重构商业的六大战略性技术》第一章未来十年重构商业的 六大技术1.4

超越深度学习:人工智能的未来

 

21世纪初大多数 AI的突破都建立在深度学习和神经网络之上,这促进了机器视觉、自然语言处理、预测和内容生成领域的巨大进步。但是,业界专家依然还在争论着 AI将开启一个技术飞速进步的黄金时代,抑或是一个迅速停滞的时代。

 

停滞时代抑或黄金时代

 

有关停滞的论调是认为深度学习具有严重的局限性训练需要太多样例并且耗时太长,虽然这些AI实现了一些惊人的效果,但它们并没有真正理解世界。深度学习基于 20世纪 80年代中期的算法和 20世纪 60年代开发的神经网络架构。一旦深度学习技术已经达到完美程度,并解决了与技术实现相关的所有问题,在将来 AI进一步发展的过程中就不再存在技术可行的问题。


 

争论的另一方认为颇具前途的研究可以为 AI引领新方向并解决一系列新问题。

 

胶囊⽹络

 

胶囊网络是 GeoffreyHinton智慧的产物,GeoffreyHinton是反向传播技术的创建者,也是深度学习之父。胶囊网络克服了深度学习的一些缺陷。胶囊网络和传统卷积神经网络之间的区别超出了本书的范围,但是胶囊网络能够在一定程度上理解图像特征之间的关系,这使得图像识别引擎更具弹性,且能从更多不同的角度更好地识别物体。

 

常识

 

AI通过接受训练得以理解世界。AI并不理解这个世界运作的方式,而常识的缺乏限制了它们的能力。一个家庭机器人在帮我寻找眼镜时,它应该知道首先要找的地方是我的书桌和床头柜,而不是冰箱。

一些组织正努力构建具备常识的 AI。人们正在建立大量的常识概念库,人们用这些常识来帮助自己做出高质量的决策。比如,橙子是甜的,但是柠檬是酸的。一只老虎不适合放进一个鞋盒子里。水是湿的,油是粘的。如果你过量喂食一只仓鼠,它会变肥。我们通常将这些常识视为理所当然,但是对于一个AI来说,这些概念并非显而易见。

艾伦研究所的研究人员利用亚马逊的 MechanicalTurk平台进行众源常识洞察。他们利用机器学习和统计分析提取额外的洞察,并理解事物之间的空间、物理、情感关系。比如,从一个常识性概念一个女孩正在吃一块饼干,系统可以推导出饼干是一种食物,而女孩比饼干大。艾伦研究所的研究人员估计他们需要大概一百万条源于人类的常识以训练他们的 AI

Cyc项目是世界上运行时间最长的AI项目,采取的是另一种不同的方式。1984年以来,DougLenat和他的团队已经收集了超过 2500万条以可供机器使用的常识。Cyc         知道诸如每棵树都是植物每棵植物最终都会死这样的事情,从这些信息就可以推断出每棵树都会死。Cyc项目当前的开发商 Cycorp公司,宣称全球排名前 15的公司有一半都在授权下使用 CycCyc被用于金融服务、健康护理、能源、客户体验、军队情报管理。

随着 Cyc项目趋于成熟,常识知识系统可以帮助未来的 AI回答更复杂的问题,并以更有意义的方式帮助人类。

 

因果 AI

 

因果 AI能够理解原因和结果,而深度学习系统只是通过发现数据中的相关关系而工作。为了进行推理,深度学习 AI探索数据中的复杂关联关系,并对这些关联关系的发生概率进行评估。通过关联关系进行推理被证明对于今天简单的AI解决方案是足够的,但是关联关系中并不蕴含因果。为了创建与人类智慧水平相当的AI,研究人员需要能力更强的机器。一些 AI研究人员,其中最著名的是JudeaPearl博士,相信 AI向前发展的最佳路径是设计出能够理解原因和结果的AI。这将支撑 AI基于对原因的理解而进行推理。深度学习 AI关联的是事件(AB一起发生),而因果 AI理解的是一个事件导致另一个事件的发生(A导致B而非反过来的其他方式B导致 A。解决诸如气候变化等复杂问题所需要的复杂机器,需要能够理解高度复杂系统中的全部因果关系。因果 AI将依赖前文所提到的常识知识为它提供用来进行合理推理的至关重要的上下文。

 

神经形态计算机

 

神经形态计算机是受大脑的工作方式启发而设计出来的。今天的神经网络设计都基于自 1960年以来对神经科学的理解。半个世纪之后,我们终于具备了实现这些老旧机器模型的算力。下一次你要求谷歌助理或Alexa播放一些甲壳虫音乐时,要记得你正在使用的AI是滚石和甲壳虫首次竞争榜首的时候设计的。神经形态计算机,即认知型计算机,是基于有关大脑如何运作的最新理解。节点是超连接,它们的连接可以随时间而变化与人类大脑表现的可塑性的方式相同),而记忆和处理功能之间并无分离。

 

·•

主要研究项目欧盟的 HumanBrainProject(人类大脑项目)以及由美国发起BRAIN(大脑)项目都在寻求推进我们对人类大脑的理解,并对大脑功能进行映射和理解。这些努力及其他类似的努力,突破了我们理解的边界,并为未来神经形态计算机的设计提供新的框架。受神经形态洞察启发的新型计算机芯片可以增强 AI功能、减少完成 AI任务所需电力的消耗。并启用其他令人振奋的新功能。无论是胶囊式网络、神经形态计算,抑或常识AI和因果 AI,都有大量可行的研究方式助力 AI在未来十年间取得进步。


相关文章
|
1月前
|
人工智能 数据安全/隐私保护
如何识别AI生成内容?探秘“AI指纹”检测技术
如何识别AI生成内容?探秘“AI指纹”检测技术
347 119
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI检测技术:如何识别机器生成的“数字指纹”?
AI检测技术:如何识别机器生成的“数字指纹”?
243 115
|
1月前
|
人工智能 自然语言处理 算法
揭秘AI文本:当前主流检测技术与挑战
揭秘AI文本:当前主流检测技术与挑战
325 115
|
1月前
|
人工智能 vr&ar UED
获奖公布|第十九届"挑战杯"竞赛2025年度中国青年科技创新"揭榜挂帅"擂台赛阿里云“AI技术助力乡村振兴”专题赛拟授奖名单公示
获奖公布|第十九届"挑战杯"竞赛2025年度中国青年科技创新"揭榜挂帅"擂台赛阿里云“AI技术助力乡村振兴”专题赛拟授奖名单公示
|
1月前
|
人工智能 新制造
TsingtaoAI受邀参加宁波AI海曙科创训练营并分享技术落地实践
10月12日至15日,由宁波市海曙区组织部主办的AI海曙科创训练营在宁波成功举办。作为受邀企业代表,TsingtaoAI团队深入参与了多项活动,与政府领导、行业专家及科创企业代表围绕AI技术在制造业、成果转化等领域的实际应用展开交流,用真实案例诠释了“技术扎根产业”的价值逻辑。
87 2
|
1月前
|
机器学习/深度学习 人工智能 算法
AI可以做电商主图了:技术原理,AI电商图生成工具对比及技术解析
双十一临近,电商主图需求激增。AI技术凭借多图融合、扩散模型等,实现高效智能设计,30秒生成高质量主图,远超传统PS效率。支持风格迁移、背景替换、文案生成,助力商家快速打造吸睛商品图,提升转化率。
663 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
如何准确检测AI生成内容?这三大技术是关键
如何准确检测AI生成内容?这三大技术是关键
583 116
|
1月前
|
人工智能 机器人 人机交互
当AI学会“看、听、懂”:多模态技术的现在与未来
当AI学会“看、听、懂”:多模态技术的现在与未来
272 117
|
1月前
|
机器学习/深度学习 人工智能 算法
AI生成内容的“指纹”与检测技术初探
AI生成内容的“指纹”与检测技术初探
196 9

热门文章

最新文章