HTAP数据库 PostgreSQL 场景与性能测试之 24 - (OLTP) 物联网 - 时序数据并发写入(含时序索引BRIN)

本文涉及的产品
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 物联网 - 时序数据并发写入(含时序索引BRIN) (OLTP)

1、背景

物联网数据,并发量大,写入吞吐大,但是时序属性,按时间区间查询、聚合、过滤、流式处理的需求最为旺盛。

PostgreSQL的时序索引(也可以称为块级索引),索引小,但是对于时序数据的过滤性特别好,并且几乎不影响写入效率。

2、设计

1、单表,含时序索引,单条并发写入。

2、多表,含时序索引,单条并发写入。

3、单表,含时序索引,批量并发写入。

4、多表,含时序索引,批量并发写入。

3、准备测试表

包含索引。

create table feed (id int, val float, crt_time timestamp default now());  
create index idx_feed on feed using BRIN (crt_time) tablespace tbs1;  
  
do language plpgsql $$  
declare  
begin  
  for i in 1..1024 loop  
    execute 'create table feed'||i||' (like feed including all)';  
  end loop;  
end;  
$$;  

4、准备测试函数(可选)

动态SQL,写入不同分表。

create or replace function ins_batch(int, int) returns void as $$  
declare  
begin  
  execute 'insert into feed'||$1||' select id , 0.1 from generate_series(1,'||$2||') t(id)';  
end;  
$$ language plpgsql strict;  
  
create or replace function ins(int) returns void as $$  
declare  
begin  
  execute 'insert into feed'||$1||' values (1, 0.1)';  
end;  
$$ language plpgsql strict;  

5、准备测试数据

6、准备测试脚本

1、单表,含时序索引,单条并发写入。

vi test.sql  
  
insert into feed (id, val) values (1,0.1);  

2、多表,含时序索引,单条并发写入。

vi test.sql  
  
\set suffix random(1,1024)  
select ins(:suffix)  

3、单表,含时序索引,批量并发写入。

vi test.sql  
  
insert into feed (id, val) select 1, 0.1 from generate_series(1,1000);  

4、多表,含时序索引,批量并发写入。

vi test.sql  
  
\set suffix random(1,1024)  
select ins_batch(:suffix, 1000)  

压测

CONNECTS=56  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

7、测试

1、单表,含时序索引,单条并发写入。

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 56  
number of threads: 56  
duration: 300 s  
number of transactions actually processed: 81975309  
latency average = 0.205 ms  
latency stddev = 0.351 ms  
tps = 273236.057797 (including connections establishing)  
tps = 273259.238238 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.205  insert into feed (id, val) values (1,0.1);  

2、多表,含时序索引,单条并发写入。

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 56  
number of threads: 56  
duration: 300 s  
number of transactions actually processed: 52089776  
latency average = 0.322 ms  
latency stddev = 0.267 ms  
tps = 173584.822070 (including connections establishing)  
tps = 173612.564907 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set suffix random(1,1024)  
         0.321  select ins(:suffix)  

3、单表,含时序索引,批量并发写入。

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 56  
number of threads: 56  
duration: 300 s  
number of transactions actually processed: 605700  
latency average = 27.735 ms  
latency stddev = 25.144 ms  
tps = 2018.830266 (including connections establishing)  
tps = 2019.002544 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
        27.735  insert into feed (id, val) select 1, 0.1 from generate_series(1,1000);  

4、多表,含时序索引,批量并发写入。

transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 56
number of threads: 56
duration: 300 s
number of transactions actually processed: 941248
latency average = 17.847 ms
latency stddev = 27.876 ms
tps = 3137.373893 (including connections establishing)
tps = 3137.648888 (excluding connections establishing)
script statistics:
 - statement latencies in milliseconds:
         0.002  \set suffix random(1,1024)
        17.846  select ins_batch(:suffix, 1000)

TPS

1、单表,含时序索引,单条并发写入。TPS: 273259 。

2、多表,含时序索引,单条并发写入。TPS: 173612 。

3、单表,含时序索引,批量并发写入。TPS: 2019 。相当于每秒写入 201.9万 条记录。

4、多表,含时序索引,批量并发写入。TPS: 3137 。相当于每秒写入 313.7万 条记录。

平均响应时间

1、单表,含时序索引,单条并发写入。0.205 毫秒。

2、多表,含时序索引,单条并发写入。0.322 毫秒。

3、单表,含时序索引,批量并发写入。27.735 毫秒。

4、多表,含时序索引,批量并发写入。17.847 毫秒。

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
目录
相关文章
|
6月前
|
Cloud Native OLAP OLTP
在业务处理分析一体化的背景下,开发者如何平衡OLTP和OLAP数据库的技术需求与选型?
在业务处理分析一体化的背景下,开发者如何平衡OLTP和OLAP数据库的技术需求与选型?
191 4
|
关系型数据库 物联网 PostgreSQL
沉浸式学习PostgreSQL|PolarDB 11: 物联网(IoT)、监控系统、应用日志、用户行为记录等场景 - 时序数据高吞吐存取分析
物联网场景, 通常有大量的传感器(例如水质监控、气象监测、新能源汽车上的大量传感器)不断探测最新数据并上报到数据库. 监控系统, 通常也会有采集程序不断的读取被监控指标(例如CPU、网络数据包转发、磁盘的IOPS和BW占用情况、内存的使用率等等), 同时将监控数据上报到数据库. 应用日志、用户行为日志, 也就有同样的特征, 不断产生并上报到数据库. 以上数据具有时序特征, 对数据库的关键能力要求如下: 数据高速写入 高速按时间区间读取和分析, 目的是发现异常, 分析规律. 尽量节省存储空间
760 1
|
SQL Cloud Native 关系型数据库
ADBPG(AnalyticDB for PostgreSQL)是阿里云提供的一种云原生的大数据分析型数据库
ADBPG(AnalyticDB for PostgreSQL)是阿里云提供的一种云原生的大数据分析型数据库
1254 1
|
关系型数据库 分布式数据库 对象存储
沉浸式学习PostgreSQL|PolarDB 5: 零售连锁、工厂等数字化率较低场景的数据分析
零售连锁, 制作业的工厂等场景中, 普遍数字化率较低, 通常存在这些问题: 数据离线, 例如每天盘点时上传, 未实现实时汇总到数据库中. 数据格式多, 例如excel, csv, txt, 甚至纸质手抄. 让我们一起来思考一下, 如何使用较少的投入实现数据汇总分析?
273 0
|
数据可视化 关系型数据库 MySQL
将 PostgreSQL 迁移到 MySQL 数据库
将 PostgreSQL 迁移到 MySQL 数据库
1754 2
|
28天前
|
存储 JSON Ubuntu
时序数据库 TDengine 支持集成开源的物联网平台 ThingsBoard
本文介绍了如何结合 Thingsboard 和 TDengine 实现设备管理和数据存储。Thingsboard 中的“设备配置”与 TDengine 中的超级表相对应,每个设备对应一个子表。通过创建设备配置和设备,实现数据的自动存储和管理。具体操作包括创建设备配置、添加设备、写入数据,并展示了车辆实时定位追踪和车队维护预警两个应用场景。
49 3
|
3月前
|
关系型数据库 OLAP 分布式数据库
揭秘Polardb与OceanBase:从OLTP到OLAP,你的业务选对数据库了吗?热点技术对比,激发你的选择好奇心!
【8月更文挑战第22天】在数据库领域,阿里巴巴的Polardb与OceanBase各具特色。Polardb采用共享存储架构,分离计算与存储,适配高并发OLTP场景,如电商交易;OceanBase利用灵活的分布式架构,优化数据分布与处理,擅长OLAP分析及大规模数据管理。选择时需考量业务特性——Polardb适合事务密集型应用,而OceanBase则为数据分析提供强大支持。
932 2
|
关系型数据库 定位技术 分布式数据库
沉浸式学习PostgreSQL|PolarDB 18: 通过GIS轨迹相似伴随|时态分析|轨迹驻点识别等技术对拐卖、诱骗场景进行侦查
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
1304 1
|
6月前
|
存储 JSON 关系型数据库
PostgreSQL Json应用场景介绍和Shared Detoast优化
PostgreSQL Json应用场景介绍和Shared Detoast优化
|
关系型数据库 分布式数据库 PolarDB
沉浸式学习PostgreSQL|PolarDB 7: 移动社交、多媒体、内容分发、游戏业务场景, 跨地域多机房的智能加速
在移动社交、多媒体、内容分发业务场景中, 如果用户要交互的内容都在中心网络(假设深圳), 现在用户流动非常频繁, 当用户从深圳出差到北京, 因为网络延迟急剧增加, 他的访问体验就会变得非常差. 网络延迟对游戏业务的影响则更加严重. 为了解决这个问题, 企业会将业务部署在全国各地, 不管用户在哪里出差, 他都可以就近访问最近的中心. 由于标记用户的只有IP地址, 怎么根据用户的接入IP来判断他应该访问哪个中心呢? 通过这个实验, 大家可以了解到在数据库中如何存储IP地址范围和各中心IDC的映射关系, 以及如何根据用户的来源IP(接入IP)来判断他应该去哪个中心IDC访问.
163 0

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版