AI 是友非敌?自杀预防技术已成功挽救 25 人生命

简介:

据世界卫生组织统计,每年有80万人死于自杀。 这个数字年年居高不下,但是人工智能和机器学习的不断创新却可以改善这一现状。本文编译自VentureBeat的原标题为AI isn’t just taking jobs, it’s saving lives的文章。

         2017年,AI研究人员再度研发出了一系列能够预防自杀的技术。Facebook,AI Buddy项目,Bark.us以及最近由卡内基梅隆大学和匹兹堡大学共同合作的项目都研发出了能够预防自杀的技术。 尽管在危机时刻AI无法取代人类产生情感共鸣或给予患者支持,但在过去一年中,这些技术创新的确可以检测到患者的自杀倾向,帮助医疗保健机构,患者的朋友和家人防患于未然,避免悲剧发生。

 AI在精神保健方面的应用

上周,卡内基梅隆大学和匹兹堡大学的研究人员在Nature Human Today杂志上发表了一篇论文,介绍他们在人工智能领域的最新创新成果。该团队创建了一个AI,可以识别出有自杀倾向的参与者。

研究人员将34名参与者分成了一个有自杀倾向组中和一个对照组。之后,他们引导每个参与者参加功能性磁共振成像(fMRI)测试。测试中,每个参与者将会看见三张写着十个词的列表。 这些词汇包括“死亡”和“悲伤”等与自杀相关的词,“无忧无虑”和“善良”等拥有积极暗示的词,以及“无聊”和“邪恶”等拥有负面暗示的词。

通过每次测试的脑部扫描,研究人员可以确定参与者在看见与自杀倾向有关的六个词时,五个脑部位置会有反应。结果显示,当出现像“死亡”或“麻烦”这样的词时,有自杀倾向的参与者的大脑活动与对照组的大脑活动明显不同。

研究人员利用大脑的这些位置和单词来训练机器人如何区分有自杀倾向的人。结果几乎准确无误。该机器人能够识别出自杀倾向组中的17名参与者中,有15名参与者有自杀倾向,对照组中的17名中有16名有自杀倾向。研究人员把这个小组分成九个有自杀倾向的参与者和八个没有自杀倾向的参与者,结果机器的准确率更高。当利用以上结果对机器人再次训练后,机器人能够成功识别出17个参与者中,有16个有自杀倾向。

“我们的最新技术是独一无二的,因为它确定了观念转变与自杀意念及相关行为之间的关系。使用机器学习算法来评估与自杀有关的特定概念的神经表征,这打开了通向大脑和思维的窗户,也揭示了有自杀倾向者如何思考与自杀和情感有关的概念。“ Marcel Just说(希伯克大学人文社会科学学院迪特里希大学心理学教授)。

对于心理学专家来说,这项发现是令人兴奋的。因为他们希望能够早点发现高危患者的自杀想法。然而,这项技术必须经过进一步的测试才能应用于标准精神保健中。 匹兹堡大学的首席研究员 David Brent说:“现在,急需更大的样本来检测这项技术。然后就可以利用这项技术来识别有自杀倾向的患者。”

 利用AI预防自杀

今年早些时候,VentureBeat报道了由科技公司研发的几种面向消费者的AI自杀预防技术。今年三月,Facebook的研究人员对第一批技术进行了测试。去年春天,这家社交媒体巨头推出一项功能。Facebook使用模式识别技术来识别和标记有可能包含自杀想法的帖子。今年,Facebook表示,计划将现有针对Facebook帖子的自杀预防工具整合到流媒体直播功能FacebookLive、消息服务Messenger中,人工智能将被用于协助发现有自杀倾向的用户。Facebook更新后的工具将为观看视频直播的用户提供一个选项,允许其直接联系有自杀倾向的用户,并将视频报告给Facebook。Facebook还将向举报用户提供专业帮助,包括联系好友和拨打热线电话。

AI Buddy项目是去年春天推出的另一项自杀预防技术。现役军人的子女(自杀几率较高)可以通过该技术在他们最喜欢的数字平台上和虚拟伙伴进行交流。虚拟伙伴能够监视孩子的一举一动,并根据他们对话中使用的词汇向监护人发送进度报告。经过训练,这台机器经可以识别蕴含自杀倾向和想法的语言。这样看护人员能够更有效地监督现役军人子女的心理健康状况。

科技公司Bark.us通过机器学习分析用户的电子邮件,短信内容及社交媒体平台上的信息。该系统可以识别出表明用户正在考虑自杀的语言,如果感到问题严重,该系统会向用户的监护人发送警报。该公司在2015年成立,其产品和技术已经造福了很多消费者。 7月,该公司宣布,在分析了5亿多青少年发布的信息之后,该系统已经挽救了25人的生命。尽管这项技术不算创新,但该系统挽救的生命数量标志着自杀预防技术的重大进展。

对未来充满希望

基于AI的自杀预防技术是潜力无穷的。随着技术的进步,我们需要铭记精神健康专家和护理人员永远都是必不可缺的。 事实上,情绪管理系统和心理学家只会变得更加重要。 随着人工智能技术能够更早地发现自杀倾向,患者的朋友,家人及医生必须按照系统发出的警告,早早采取行动。

目录
相关文章
|
6天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
105 59
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
37 11
|
4天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗健康领域的应用与挑战####
本文旨在探讨人工智能(AI)技术在医疗健康领域的创新应用及其面临的主要挑战。通过深入分析AI如何助力疾病诊断、治疗方案优化、患者管理及药物研发,本文揭示了AI技术在提升医疗服务质量、效率和可及性方面的巨大潜力。同时,文章也指出了数据隐私、伦理道德、技术局限性等关键问题,并提出了相应的解决策略和未来发展方向。本文为医疗从业者、研究者及政策制定者提供了对AI医疗技术的全面理解,促进了跨学科合作与创新。 ####
|
2天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。
|
3天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。
|
5天前
|
人工智能 运维 数据挖掘
跨界融合:AI与5G技术如何共同推动数字化转型
【10月更文挑战第29天】本文探讨了人工智能(AI)与第五代移动通信技术(5G)的结合如何推动数字化转型。通过高速、低延迟的5G网络和AI的数据分析能力,两者相辅相成,实现了智能化网络运维、增强网络功能和多行业的实际应用。文中提供了网络流量预测和故障预测的示例代码,展示了技术的实际应用潜力。
17 1
|
11天前
|
机器学习/深度学习 人工智能 供应链
AI技术在医疗领域的应用与未来展望###
本文深入探讨了人工智能(AI)技术在医疗领域的多种应用及其带来的革命性变化,从疾病诊断、治疗方案优化到患者管理等方面进行了详细阐述。通过具体案例和数据分析,展示了AI如何提高医疗服务效率、降低成本并改善患者体验。同时,文章也讨论了AI技术在医疗领域面临的挑战和未来发展趋势,为行业从业者和研究人员提供参考。 ###
|
11天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
42 6
|
11天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗领域的应用与挑战
【10月更文挑战第21天】 本文探讨了人工智能(AI)在医疗领域的多种应用,包括疾病诊断、治疗方案推荐、药物研发和患者管理等。通过分析这些应用案例,我们可以看到AI技术如何提高医疗服务的效率和准确性。然而,AI在医疗领域的广泛应用也面临诸多挑战,如数据隐私保护、算法透明度和伦理问题。本文旨在为读者提供一个全面的视角,了解AI技术在医疗领域的潜力和面临的困难。