HTAP数据库 PostgreSQL 场景与性能测试之 4 - (OLAP) 大表OUTER JOIN统计查询

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 大表OUTER JOIN统计查询 (OLAP)

1、背景

OUTER JOIN 在统计分析的应用场景用得较多,例如多表数据补齐、求差集、求并集等。

2、设计

1000万与1亿测试数据,一对多,(A表 800万a.id=b.id数据,200万a.id<>b.id数据,B表 8000万a.id=b.id记录,2000万a.id<>b.id记录)。

测试1:1000万 left join 1亿

测试2:1亿 left join 1000万

3、准备测试表

create table a(  
  id int primary key,  
  c1 int,  
  c2 int  
);  
  
create table b(  
  id int,  
  c1 int,  
  c2 int  
);  
  
create index idx_b_id on b(id);  

4、准备测试函数(可选)

5、准备测试数据

insert into a select generate_series(1,10000000);  
  
insert into b select 2000000+random()*10000000 from generate_series(1,100000000);  

6、准备测试脚本

vi test.sql  
  
\timing  
set parallel_setup_cost =0;  
set parallel_tuple_cost =0;  
set max_parallel_workers_per_gather =28;  
set max_parallel_workers =28;  
alter table a set (parallel_workers =16);  
alter table b set (parallel_workers =16);  
  
select count(*) from a left join b on (a.id=b.id) where b.* is null;  
  
select count(*) from a left join b on (a.id=b.id) where b.* is not null;  
  
select count(*) from b left join a on (a.id=b.id) where a.* is null;  
  
select count(*) from b left join a on (a.id=b.id) where a.* is not null;  

7、测试

export PGHOST=$PGDATA      
export PGPORT=1999      
export PGUSER=postgres      
export PGPASSWORD=postgres      
export PGDATABASE=postgres      
      
psql -f ./test.sql   

8、测试结果

Timing is on.  
SET  
Time: 0.231 ms  
SET  
Time: 0.061 ms  
SET  
Time: 0.064 ms  
SET  
Time: 0.048 ms  
ALTER TABLE  
Time: 0.604 ms  
ALTER TABLE  
Time: 0.181 ms  
  count    
---------  
 2000364  
(1 row)  
  
Time: 8592.430 ms (00:08.592)  
 count   
-------  
     0  
(1 row)  
  
Time: 8686.379 ms (00:08.686)  
  count     
----------  
 19999964  
(1 row)  
  
Time: 17443.574 ms (00:17.444)  
 count   
-------  
     0  
(1 row)  
  
Time: 18797.034 ms (00:18.797)  

TPS

响应时间

1000万 left join 1亿:8秒。

1亿 left join 1000万:18秒。

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
2月前
|
关系型数据库 分布式数据库 数据库
瑶池数据库大讲堂|PolarDB HTAP:为在线业务插上实时分析的翅膀
瑶池数据库大讲堂介绍PolarDB HTAP,为在线业务提供实时分析能力。内容涵盖MySQL在线业务的分析需求与现有解决方案、PolarDB HTAP架构优化、针对分析型负载的优化(如向量化执行、多核并行处理)及近期性能改进和用户体验提升。通过这些优化,PolarDB HTAP实现了高效的数据处理和查询加速,帮助用户更好地应对复杂业务场景。
|
7月前
|
SQL NoSQL 关系型数据库
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
实时数仓Hologres发展问题之实时数仓的类数据库化与HTAP数据库的差异如何解决
83 2
|
7月前
|
关系型数据库 OLAP 分布式数据库
揭秘Polardb与OceanBase:从OLTP到OLAP,你的业务选对数据库了吗?热点技术对比,激发你的选择好奇心!
【8月更文挑战第22天】在数据库领域,阿里巴巴的Polardb与OceanBase各具特色。Polardb采用共享存储架构,分离计算与存储,适配高并发OLTP场景,如电商交易;OceanBase利用灵活的分布式架构,优化数据分布与处理,擅长OLAP分析及大规模数据管理。选择时需考量业务特性——Polardb适合事务密集型应用,而OceanBase则为数据分析提供强大支持。
2183 2
|
9月前
|
存储 关系型数据库 MySQL
深入OceanBase内部机制:高性能分布式(实时HTAP)关系数据库概述
深入OceanBase内部机制:高性能分布式(实时HTAP)关系数据库概述
|
9月前
|
存储 SQL 运维
OLAP数据库选型指南:Doris与ClickHouse的深入对比与分析
OLAP数据库选型指南:Doris与ClickHouse的深入对比与分析
|
10月前
|
存储 监控 Cloud Native
如何通过持续测试和调整来提高OLAP系统的性能和可扩展性?
【5月更文挑战第14天】如何通过持续测试和调整来提高OLAP系统的性能和可扩展性?
98 2
|
10月前
|
Cloud Native OLAP OLTP
在业务处理分析一体化的背景下,开发者如何平衡OLTP和OLAP数据库的技术需求与选型?
在业务处理分析一体化的背景下,开发者如何平衡OLTP和OLAP数据库的技术需求与选型?
231 4
|
10月前
|
SQL BI Apache
奇富科技基于阿里云数据库 SelectDB 版内核 Apache Doris 的统一 OLAP 场景探索实践
Apache Doris 作为整体 OLAP 场景,助力奇富科技信贷科技服务平台优化,使得报表分析场景 SLA 达标率提升至 99% 以上,平均查询耗时降低 50%,为营销活动、广告投放等提供强有力的数据支持。
奇富科技基于阿里云数据库 SelectDB 版内核 Apache Doris 的统一 OLAP 场景探索实践
|
缓存 关系型数据库 Serverless
数据库内核那些事,PolarDB HTAP Serverless,打造经济易用的实时分析系统
下本从IMCI Serverless核心优势角度的介绍各优化工作内容。
数据库内核那些事,PolarDB HTAP Serverless,打造经济易用的实时分析系统
|
SQL 存储 自然语言处理
玩转阿里云RDS PostgreSQL数据库通过pg_jieba插件进行分词
在当今社交媒体的时代,人们通过各种平台分享自己的生活、观点和情感。然而,对于平台管理员和品牌经营者来说,了解用户的情感和意见变得至关重要。为了帮助他们更好地了解用户的情感倾向,我们可以使用PostgreSQL中的pg_jieba插件对这些发帖进行分词和情感分析,来构建一个社交媒体情感分析系统,系统将根据用户的发帖内容,自动判断其情感倾向是积极、消极还是中性,并将结果存储在数据库中。
玩转阿里云RDS PostgreSQL数据库通过pg_jieba插件进行分词

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版