【阿里ICCV论文技术解读】基于层次化多模态LSTM的视觉语义联合嵌入-阿里云开发者社区

开发者社区> 新智元> 正文

【阿里ICCV论文技术解读】基于层次化多模态LSTM的视觉语义联合嵌入

简介:
640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

精准描述商品:计算机视觉和自然语言处理的联合

近年来, 随着深度学习技术的快速发展, 人们开始尝试将计算机视觉(Vision)和自然语言处理(Language)两个相对独立的领域联合起来进行研究, 实现一些在过去看来非常困难的任务,例如“视觉-语义联合嵌入(Visual-Semantic Embedding)”。该任务需要将图像及语句表示成一个固定长度的向量,进而嵌入到同一个矢量空间中。这样,通过该空间中的近邻搜索可以实现图像和语句的匹配、检索等。

视觉语义联合嵌入的一个典型应用就是图像标题生成(Image Captioning):对于任意输入的一张图像, 在空间中找到最匹配的一句话, 实现图像内容的描述。在电商场景下, 淘宝卖家在发布一件商品时, 该算法可以根据卖家上传得图片, 自动生成一段描述性文字, 供卖家编辑发布使用。再比如,视觉语义联合嵌入还可以应用于“跨模态检索(Cross-media Retrieval)”:当用户在电商搜索引擎中输入一段描述性文字(如“夏季宽松波希米亚大摆沙滩裙”、“文艺小清新娃娃领飞飞袖碎花A字裙”等), 通过文字-图像联合分析, 从商品图像数据库中找到最相关的商品图像返回给用户。

之前的不足:只能嵌入较短的语句简单描述图片

以往的视觉语义联合嵌入方法往往只能对比较短的句子进行嵌入,进而只能对图像做简单而粗略的描述,然而在实际应用中,人们更希望得到对图像(或图像显著区域)更为细致精确的描述。如图1所示,我们不仅想知道谁在干什么,还想知道人物的外表,周围的物体,背景,时间地点等。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

现有方法:“A girl is playing a guitar.” 

我们提出的方法:“a young girl sitting on a bench is playing a guitar with a black and white dog nearby.

现有方法的问题

为了实现这个目标,我们提出一个框架:第一步从图像中找出一些显著性区域,并用具有描述性的短语描述每个区域;第二步将这些短语组合成一个非常长的具有描述性的句子,如图2所示。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

图2 我们的提出的框架


为此,我们在训练视觉语义联合嵌入模型时不仅需要将整个句子嵌入空间,更应该将句子中的各种描述性短语也嵌入空间。然而,以往的视觉语义联合嵌入方法通常采用循环神经网络模型(如LSTM(Long short-term memory)模型)来表示语句。标准的LSTM模型有一个链式结构(Chain structure):每一个单元对应一个单词,这些单词按出现顺序排成一列,信息从第一个单词沿该链从前传到最后,最后一个节点包含了所有的信息,往往用于表示整个句子。显然,标准的LSTM模型只适合表示整个句子,无法表示一句话中包含的短语,如图所示。

 

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

图3 链式结构的问题

论文创新方法:提出层次化的LSTM模型

本文提出一种多模态、层次化的LSTM模型(Hierarchical Multimodal LSTM)。该方法可以将整个句子、句子中的短语、整幅图像、及图像中的显著区域同时嵌入语义空间中,并且自动学习出“句子-图像”及“短语-图像区域”间的对应关系。这样一来,我们生成了一个更为稠密的语义空间,该空间包含了大量的描述性的短语,进而可以对图像或图像区域进行更详细和生动的描述,如图所示。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

图4 本文提出的多模态层次结构

本文方法的创新性在于提出了一个层次化的LSTM模型,根节点对应整句话或整幅图像,叶子节点对应单词,中间节点对应短语或图象中的区域。该模型可以对图像、语句、图像区域、短语进行联合嵌入(Joint embedding),并且通过树型结构可以充分挖掘和利用短语间的关系(父子短语关系)。其具体网络结构如下图所示

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

图5 网络结构

其中为每一个短语和对应的图像区域都引入一个损失函数,用于最小化二者的距离,通过基于结构的反向传播算法进行网络参数学习。

在图像-语句数据集上的比较

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

图 6:在Flickr30K数据集上的对比


640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

图 7在MS-COCO数据集上的对比


可见本文方法在几个公开数据集上都获得了很好的效果

在图像区域-短语数据集上的对比

我们提供了一个带有标注的图像区域-短语数据集MS-COCO-region,其中人工标定了一些显著性物体,并在这些物体和短语之间建立了联系。

640?wx_fmt=png&tp=webp&wxfrom=5&wx_lazy=

图 8在MS-COCO-region数据集上的对比

下图是我们方法的可视化结果,可见我们的短语具有很强的描述性

640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

此外,我们可以学习出图像区域和短语的对应关系,如下

640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy

原文发布时间为:2017-10-25

本文作者:牛振兴 周默 王乐 高新波 华刚

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号

原文链接:【阿里ICCV论文技术解读】基于层次化多模态LSTM的视觉语义联合嵌入

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
+ 订阅

官方博客
官网链接