阿里云MVP Meetup 《云数据·大计算:海量日志数据分析与应用》之《数据采集:日志数据上传》篇

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 大数据workshop:《云数据·大计算:海量日志数据分析与应用》之《数据采集:日志数据上传》篇

大数据workshop:《云数据·大计算:海量日志数据分析与应用》之《数据采集:日志数据上传》篇

本手册为阿里云MVP Meetup Workshop《云计算·大数据:海量日志数据分析与应用》的《数据采集:日志数据上传》篇而准备。主要为保障各位学员在workshop当天能够顺畅进行动手实操,那么本节为学员掌握阿里云数据采集的操作和使用。

实验涉及大数据产品

实验环境准备

必备条件:首先需要确保自己有阿里云云账号并已实名认证。详细点击:

开通大数据计算服务MaxCompute

若已经开通和购买了MaxCompute,请忽略次步骤直接进入创建Data IDE项目空间。

  • step1:进入阿里云官网并点击右上角登录阿里云账号。
    登录
  • step2:点击进入数加 · MaxCompute产品详情页,点击立即开通

image

立即开通

  • step3:选择 按量付费,且选择 华东2(上海) Region 点击 立即购买** 。
    购买

创建Data IDE项目空间

确保阿里云账号处于登录状态。

  • step1:点击进入大数据(数加)管理控制台>大数据开发套件tab页面下。
  • step2:点击创建项目,跳出创建项目对话框。
    创建项目
  • step3:勾选付费方式为I/O后付费,填写项目名称及相关信息,点击确定,直至返回创建成功状态。
    配置项目

项目名需要字母或下划线开头,只能包含字母下划线和数字。
【注意】项目名称全局唯一,建议大家采用自己容易区分的名称来作为本次workshop的项目空间名称。

进入大数据开发套件

确保阿里云账号处于登录状态。

项目列表

  • step2:点击已经创建的项目空间名称,进入大数据开发套件。

点击进入项目

进入大数据开发套件

新建数据源

根据workshop模拟的场景,需要分别创建FTP数据源和RDS数据源。

1.新建FTP数据源
  • step1:点击数据集成>数据源管理,继而点击新增数据源

新增数据源

  • step2:选择数据源类型ftp,同时Protocol选择为sftp,其他配置项如下。

image

FTP数据源配置信息如下:

  • 数据源类型类型:有公网ip
  • 数据源名称:ftp_workshop_log
  • 数据源描述:ftp日志文件同步
  • Protocol:sftp
  • Host:10.80.177.33
  • Port:22
  • 用户名/密码:workshop/workshop
  • step3:点击测试连通性,连通性测试通过后,点击确定保存配置。

保存ftp数据源

2.新建RDS数据源
  • step1:点击数据集成>数据源管理,继而点击新增数据源

新增数据源

  • step2:选择数据源类型为RDS>mysql并完成相关配置项。

image

RDS数据源配置信息如下:

  • 数据源类型:阿里云数据库(RDS)
  • 数据源名称:rds_workshop_log
  • 数据源描述:rds日志数据同步
  • RDS实例名称:rm-bp1z69dodhh85z9qa
  • RDS实例购买者ID:1156529087455811
  • 数据库名:workshop
  • 用户名/密码:workshop/workshop#2017
  • step3:点击测试连通性,连通性测试通过后,点击确定保存配置。

保存RDS数据源

创建目标表

  • step1:点击数据开发,进入数据开发首页中点击新建脚本

新建脚本

  • step2:配置文件名称为create_table_ddl,类型选择为ODPS SQL,点击提交

配置脚本

  • step3:编写DDL创建表语句,如下分别创建FTP日志对应目标表和RDS对应目标表.

编写DDL

DDL语句如下:

--创建ftp日志对应目标表
DROP TABLE IF EXISTS ods_raw_log_d;

CREATE TABLE ods_raw_log_d (
    col STRING
)
PARTITIONED BY (
    dt STRING
);

--创建RDS对应目标表
DROP TABLE IF EXISTS ods_user_info_d;

CREATE TABLE ods_user_info_d (
    uid STRING COMMENT '用户ID',
    gender STRING COMMENT '性别',
    age_range STRING COMMENT '年龄段',
    zodiac STRING COMMENT '星座'
)
PARTITIONED BY (
    dt STRING
);
  • step3:点击运行,直至日志信息返回成功表示两张目标表创建成功。

运行DDL

  • step4:可以使用desc语法来确认创建表是否成功。

DESC

  • step5:点击保存,保存编写的SQL建表语句。

保存DDL

新建工作流任务

  • step1:点击新建并选择新建任务
    新建任务
  • step2:选择工作流任务,调度类型选择为周期调度,其他配置项如下。

配置任务

  • step3:点击创建。
  • step4:进入工作流配置面板,并向面板中拖入一个虚节点(命名为workshop_start)和两个数据同步节点(分别命名为ftp_数据同步和rds_数据同步):
    新建虚拟节点

新建FTP同步

新建RDS同步

  • step5:拖拽连线将workshop_start虚节点设置为两个数据同步节点的上游节点,如下所示:

同步连线

  • step6:点击保存(或直接快捷键ctrl+s)。

配置数据同步任务

1)配置ftp_数据同步节点
  • step1:双击ftp_数据同步节点,进入节点配置界面。选择来源:并选择数据来源事先配置好的ftp数据源,为ftp_workshop_log,文件路径为/home/workshop/user_log.txt。可以对非压缩文件进行数据预览。

配置同步

同步预览

数据来源配置项具体说明如下:

  • 数据来源:ftp_workshop_ftp
  • 文件路径:/home/workshop/user_log.txt
  • 列分隔符:|
  • step2:选择目标。点击下一步

数据流向选择数据源为odps_first,表名为ods_raw_log_d。分区信息和清理规则都采取系统默认,即清理规则为写入前清理已有数据,分区按照${bdp.system.bizdate}。

  • step3:配置字段映射。连接要同步的字段。如下:字段映射
  • step4:在下一步操作中配置通道控制,作业速率上限为10MB/s,进入下一步。

通道控制

可在预览保存页面中,预览上述的配置情况,也可以进行修改,确认无误后,点击保存

  • step5:点击返回工作流面板。

返回工作流

2)配置rds_数据同步节点
  • step1:双击rds_数据同步节点进入配置界面。选择来源:选择数据来源为rds_workshop_log,表名为ods_user_info_d;切分键为使用默认生成列即可。点击数据预览,可以看到表中数据样例。

RDS选择来源

  • step2:进入下一步,选择目标数据源和表名。

RDS选择目标

  • step3:进入下一步,配置字段映射。默认会同名映射,字段映射关系采用默认即可,如下所示:

RDS字段映射

  • step4:进入下一步,配置作业速率上限。

RDS通道控制

  • step5:在预览保存页面中确认配置信息,无误后点击保存配置。

RDS预览保存

配置调度、提交工作流任务

  • step1:点击调度配置,配置调度参数

调度配置

  • step2:点击提交,提交已经配置的工作流任务。

提交工作流任务

  • step3:在变更节点列表弹出框中点击确定提交

确定提交任务

提交成功后工作流任务处于只读状态,如下:只读状态

测试运行工作流任务

  • step1:点击测试运行

测试运行

  • step2:在周期任务运行提醒弹出框点击确定

周期任务运行提醒

  • step3:在测试运行弹出框中,实例名称和业务日期都保持默认,点击运行

测试运行按钮

  • step4:在工作流任务测试运行弹出框中,点击前往运维中心

在运维中心可以查看任务视图,如下图表示该工作流任务(名称为workshop_start)正在运行。

运维中心测试

直至所有节点都运行返回成功状态即可(需要点击运维视窗中的刷新按钮查看实时状态)。如下所示:

数据同步测试成功

  • step5:点击节点,查看运行日志。

日志界面
)

确认数据是否成功导入MaxCompute

  • step1:返回到create_table_ddl脚本文件中。
  • step2:编写并执行sql语句查看导入ods_raw_log_d记录数。

数据预览

  • step3:同样编写并执行sql语句查看导入ods_user_info_d记录数。

附录:SQL语句如下,其中分区键需要更新为业务日期,如测试运行任务的日期为20171011,那么业务日期为20171010.

---查看是否成功写入MaxCompute

select count(*) from ods_raw_log_d where dt=业务日期;

select count(*) from ods_user_info_d where dt=业务日期;
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
8天前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
104 71
|
7天前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
106 73
|
4天前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
42 22
|
2月前
|
存储 机器学习/深度学习 数据可视化
数据集中存在大量的重复值,会对后续的数据分析和处理产生什么影响?
数据集中存在大量重复值可能会对后续的数据分析和处理产生多方面的负面影响
130 56
|
9天前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
40 5
|
21天前
|
数据采集 监控 数据挖掘
常用电商商品数据API接口(item get)概述,数据分析以及上货
电商商品数据API接口(item get)是电商平台上用于提供商品详细信息的接口。这些接口允许开发者或系统以编程方式获取商品的详细信息,包括但不限于商品的标题、价格、库存、图片、销量、规格参数、用户评价等。这些信息对于电商业务来说至关重要,是商品数据分析、价格监控、上货策略制定等工作的基础。
|
3月前
|
缓存 弹性计算 NoSQL
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
|
5月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
97 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
102 4
数据分析的 10 个最佳 Python 库
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
261 4

热门文章

最新文章