《中国人工智能学会通讯》——6.14 知识图谱中的推理技术

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第6章,第6.14节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

6.14 知识图谱中的推理技术

知识图谱的概念由谷歌 2012 年正式提出,旨在实现更智能的搜索引擎。知识图谱本质上是一种叫做语义网络(semantic network)的知识库,即具有有向图结构的一个知识库,其中图的结点代表实体(entity)或者概念(concept),而图的边代表实体 / 概念之间的各种语义关系,比如说两个实体之间的相似关系。谷歌知识图谱很重要的一部分是一个大规模的协同合作的知识库,叫 Freebase。Freebase 采用的数据结构是图模型,即可以把一个 Freebase 的知识库看成是有向图,这种数据模型相对于传统数据库的优势在于可以处理更复杂的数据以及方便数据的插入。谷歌知识图谱的模式(Schema)是由谷歌自己的专业团队在 Freebase的基础上开发和设计的。谷歌知识图谱中,所有的对象都有属于它的Type。Type的数量不是固定的,有一个数据结构 Collection 记录的是计算机自动抽取出的类型,Collection 中有成千上万种类型,有些今天生成后第二天就被删除了,有些则能长期的保留在 Collection 中。如果 Collection 中的某一种类型能够长期的保留,发展到一定程度后,由专业的人员进行决策、命名,最后上升为一种 Type,作为 Knowledge Graph 的一种类型保存在模式中。Knowledge Graph 的 Type 有音乐家、网球运动员等。不过谷歌的知识图谱中的模式并没有太多去考虑类型的层次性。

知识图谱的概念于 2013 年以后开始在学术界和业界普及,并在智能问答、医疗、反欺诈等应用中发挥重要作用。虽然很多文献都把知识图谱看成是一个实体 - 关系的有向图。但是也有一些观点认为知识图谱应该包含更抽象的概念之间的关系,比如说,谷歌和必应、雅虎一起推出了 Schema.org 1来提供一个覆盖广泛主题(包括人物、地点、事件等)的模式(schema)。随着知识图谱研究的深入,研究人员发现知识图谱在应用中存在以下质量问题:第一个问题是知识图谱的不完备性,即知识图谱中有些关系会缺失;第二个问题是知识图谱中存在错误的关系,这是因为知识图谱的构建一般需要用到统计方法,而统计方法很难保证学习的知识是绝对正确的。这两个问题对于智能问答等应用来说是很严重的,前者会导致提出的问题没有答案,而后者会导致系统给出的答案是错误的。为了解决这两个问题,就要求对知识图谱的推理进行研究。知识库推理可以粗略地分为基于符号的推理和基于统计的推理。在人工智能的研究中,基于符号的推理一般是基于经典逻辑(一阶谓词逻辑或者命题逻辑)或者经典逻辑的变异(比如说缺省逻辑)。基于符号的推理可以从一个已有的知识图谱推理出新的实体间关系,从而有助于解决第一个问题;而且基于符号的推理可以对知识图谱进行逻辑的冲突检测,从而有助于解决第二个问题。基于统计的方法一般指关系机器学习方法,通过统计规律从知识图谱中学习到新的实体间关系,从而处理第一个问题;并且对新学到的关系进行评分,去掉那些可能错误的关系,从而处理第二个问题。下面分别就这两类方法进行介绍。

相关文章
|
13天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
60 3
|
22天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
128 59
|
3天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用####
本文探讨了人工智能(AI)技术在医疗领域的创新应用及其带来的革命性变化。通过分析AI在疾病诊断、个性化治疗、药物研发和患者管理等方面的具体案例,展示了AI如何提升医疗服务的效率和准确性。此外,文章还讨论了AI技术面临的挑战与伦理问题,并展望了未来的发展趋势。 ####
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在医疗领域的应用与前景####
本文探讨了人工智能(AI)在医疗领域的多方面应用,包括疾病诊断、个性化治疗、患者管理以及药物研发等。通过对现有技术的梳理和未来趋势的展望,旨在揭示AI如何推动医疗行业的变革,并提升医疗服务的质量和效率。 ####
27 5
|
11天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
48 7
|
13天前
|
人工智能 自然语言处理 自动驾驶
技术与人性:探索人工智能伦理的边界####
本文深入探讨了人工智能技术飞速发展背景下,伴随而来的伦理挑战与社会责任。不同于传统摘要直接概述内容,本文摘要旨在引发读者对AI伦理问题的关注,通过提出而非解答的方式,激发对文章主题的兴趣。在智能机器逐渐融入人类生活的每一个角落时,我们如何确保技术的善意使用,保护个人隐私,避免偏见与歧视,成为亟待解决的关键议题。 ####
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
76 11
|
16天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
73 4
|
16天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
下一篇
无影云桌面