PostgreSQL 性能优化方法 - 1

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
简介:
使用一个非常容易理解的案例,讲解PostgreSQL的优化手段。
本文成文自2012年初,有一些性能指标数据已经过时了,但是优化方法没有过时,请关注优化的方法。
现在的硬件和软件,一台主机达到的性能数据已经可以替代我当时测试的8台主机性能了。

【软件环境】 
CentOS 5 x64
PostgreSQL 9.1.3  (还是以前测试的,所以用的老版本,你可以用最新的版本测试比如9.5)
plproxy 2.3
pgbouncer 1.4.2

【测试模型】
设计一个包含INSERT, UPDATE, SELECT语句的业务模型用于本优化案例.
业务逻辑 : 
【图1】 

【测试表】
create table user_info
(userid int,
engname text,
cnname text,
occupation text,
birthday date,
signname text,
email text,
qq numeric,
crt_time timestamp without time zone,
mod_time timestamp without time zone
);

create table user_session
(userid int,
logintime timestamp(0) without time zone,
login_count bigint default 0,
logouttime timestamp(0) without time zone,
online_interval interval default interval '0'
);

create table user_login_rec
(userid int,
login_time timestamp without time zone,
ip inet
);

create table user_logout_rec
(userid int,
logout_time timestamp without time zone,
ip inet
);

【初始化数据】
insert into user_info (userid,engname,cnname,occupation,birthday,signname,email,qq,crt_time,mod_time)
select generate_series(1,20000000),
'digoal.zhou',
'德哥',
'DBA',
'1970-01-01'
,E'公益是一辈子的事, I\'m Digoal.Zhou, Just do it!',
'digoal@126.com',
276732431,
clock_timestamp(),
NULL;

insert into user_session (userid) select generate_series(1,20000000);

set work_mem='2048MB';
set maintenance_work_mem='2048MB';
alter table user_info add constraint pk_user_info primary key (userid);
alter table user_session add constraint pk_user_session primary key (userid);

【业务函数】
-- 模拟用户登录的函数
create or replace function f_user_login 
(i_userid int,
OUT o_userid int,
OUT o_engname text,
OUT o_cnname text,
OUT o_occupation text,
OUT o_birthday date,
OUT o_signname text,
OUT o_email text,
OUT o_qq numeric
)
as $BODY$
declare
begin
select userid,engname,cnname,occupation,birthday,signname,email,qq
into o_userid,o_engname,o_cnname,o_occupation,o_birthday,o_signname,o_email,o_qq
from user_info where userid=i_userid;
insert into user_login_rec (userid,login_time,ip) values (i_userid,now(),inet_client_addr());
update user_session set logintime=now(),login_count=login_count+1 where userid=i_userid;
return;
end;
$BODY$
language plpgsql;

-- 模拟用户退出的函数
create or replace function f_user_logout
(i_userid int,
OUT o_result int
)
as $BODY$
declare
begin
insert into user_logout_rec (userid,logout_time,ip) values (i_userid,now(),inet_client_addr());
update user_session set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=i_userid;
o_result := 0;
return;
exception 
when others then
o_result := 1;
return;
end;
$BODY$
language plpgsql;

【搭建测试模型】
1.  搭建环境, 安装PostgreSQL9.1.3数据库软件并初始化数据库(略).
2.  调整数据库postgresql.conf参数. 打开日志, SQL统计, 跟踪, 以及性能参数, 便于优化过程中取证.
监听IPv4的所有IP.
listen_addresses = '0.0.0.0'

最大允许1000个连接.
max_connections = 1000

为超级用户保留3个可用连接.
superuser_reserved_connections = 13

默认的unix socket文件放在/tmp, 修改为$PGDATA, 以确保安全.
unix_socket_directory = '.'

默认的访问权限是0777, 修改为0700更安全.
unix_socket_permissions = 0700

Linux下面默认是2小时. tcp的keepalives包发送间隔以及重试次数. 如果你的网络环境中有设备自动断开空闲会话,那么建议你设置心跳时间小于网络设备的断链接阈值。
tcp_keepalives_idle = 60
tcp_keepalives_interval = 10
tcp_keepalives_count = 6

大的shared_buffers需要大的checkpoint_segments,同时需要申请更多的System V共享内存资源.
这个值不需要设的太大, 因为PostgreSQL还依赖操作系统的cache来提高读性能, 另外, 写操作频繁的数据库这个设太大反而会增加checkpoint压力(除非你使用了SSD或者IOPS能力很好的存储).
建议设置为内存大小的20%
shared_buffers = 1GB

注意现在的PG版本已经支持大页了,如果需要的共享内存很多,建议使用大页。
需要在系统操作中开启大页支持。 cat /proc/meminfo |grep Hugepagesize   得到 2048 kB , 如果需要8G shared buffer, 输入 echo "vm.nr_hugepages=4096" (也可以略大) 

这个值越大, VACUUM, CREATE INDEX的操作越快, 当然大到一定程度瓶颈就不在内存了, 可能是CPU例如创建索引.
这个值是一个操作的内存使用上限, 而不是一次性分配出去的. 并且需要注意如果开启了autovacuum, 最大可能有autovacuum_max_workers*maintenance_work_mem的内存被系统消耗掉.
maintenance_work_mem = 512MB

建议防止暴力破解, 密码复杂度检测, 开启pg_stat_statements, 开启auto_explain, 参考 http://blog.163.com/digoal@126/blog/static/16387704020149852941586  
shared_preload_libraries = 'auth_delay,passwordcheck,pg_stat_statements,auto_explain'           

一般设置为比系统限制的略少,ulimit -a : stack size              (kbytes, -s) 10240
max_stack_depth = 8MB

手动执行vacuum操作时, 默认是没有停顿执行到底的, 为了防止VACUUM操作消耗太多数据库服务器硬件资源, 这个值是指vacuum在消耗多少资源后停顿多少时间,以便其他的操作可以使用更多的硬件资源.
vacuum_cost_delay = 10ms
#vacuum_cost_page_hit = 1               # 0-10000 credits
#vacuum_cost_page_miss = 10             # 0-10000 credits
#vacuum_cost_page_dirty = 20            # 0-10000 credits
vacuum_cost_limit = 10000                # 1-10000 credits

默认bgwriter进程执行一次后会停顿200ms再被唤醒执行下一次操作, 当数据库的写操作很频繁的时候, 200ms可能太长, 导致其他进程需要花费过多的时间来进行bgwriter的操作.
bgwriter_delay = 10ms

如果需要做数据库WAL日志备份的话至少需要设置成archive级别, 如果需要做hot_standby那么需要设置成hot_standby, 由于这个值修改需要重启数据库, 所以先设置成hot_standby比较好. 当然hot_standby意味着WAL记录得更详细, 如果没有打算做hot_standby设置得越低性能越好.
wal_level = hot_standby

PostgreSQL 9.4已经支持逻辑复制了。如果是9.4,建议设置为logical。
# wal_level = logical                     # 如果将来打算使用logical复制, 最后先配置好, 不需要停机再改.

wal buffers默认是-1 根据shared_buffers的设置自动调整shared_buffers*3% .最大限制是XLOG的segment_size.
wal_buffers = 16MB

多少个xlog file产生后开始checkpoint操作, 这个值越大, 允许shared_buffer中的被频繁访问的脏数据存储得更久. 一定程度上可以提高数据库性能. 但是太大的话会导致在数据库发生checkpoint的时候需要处理更多的脏数据带来长时间的IO开销. 太小的话会导致产生更多的WAL文件(因为full page writes=on,CHECKPOINT后的第一次块的改变要写全块, checkpoint越频繁, 越多的数据更新要写全块导致产生更多WAL).
建议设置为shared_buffers除以单个XLOG文件的大小。
checkpoint_segments = 64

这个和checkpoint_segments的效果是一样的, 只是触发的条件是时间条件.
checkpoint_timeout = 5min

归档参数的修改也需要重启数据库, 所以就先打开吧.
archive_mode = on

这个是归档调用的命令, 我这里用date代替, 所以归档的时候调用的是输出时间而不是拷贝wal文件.
archive_command = '/bin/date'

如果要做hot standby这个必须大于0, 并且修改之后要重启数据库所以先设置为32.
max_wal_senders = 32

这是个standby 数据库参数, 为了方便角色切换, 我一般是所有的数据库都把他设置为on 的.
hot_standby = on

这个参数是说数据库中随机的PAGE访问的开销占seq_page_cost的多少倍 , seq_page_cost默认是1. 其他的开销都是seq_page_cost的倍数. 这些都用于基于成本的执行计划选择.
random_page_cost = 2.0

和上一个参数一样, 用于基于成本的执行计划选择. 不是说会用多少cache, 它只是个度量值. 表示系统有多少内存可以作为操作系统的cache. 越大的话, 数据库越倾向使用index这种适合random访问的执行计划.
建议设置为内存的80%
effective_cache_size = 10GB

下面是日志输出的配置.
log_destination = 'csvlog'
logging_collector = on
log_truncate_on_rotation = on
log_rotation_age = 1d
log_rotation_size = 10MB

这个参数调整的是记录执行时间超过1秒的SQL到日志中, 一般用于跟踪哪些SQL执行时间长.
log_min_duration_statement = 1000ms

记录每一次checkpoint到日志中.
log_checkpoints = on

记录连接和断开连接
log_connections = on
log_disconnections = on
log_error_verbosity = verbose           # 在日志中输出代码位置

记录锁等待超过1秒的操作, 一般用于排查业务逻辑上的问题.
log_lock_waits = on
deadlock_timeout = 1s

记录DDL语句, 一般用于跟踪数据库中的危险操作.
log_statement = 'ddl'

这个原本是1024表示跟踪的SQL在1024的地方截断, 超过1024将无法显示全SQL. 修改为2048会消耗更多的内存(基本可以忽略), 不过可以显示更长的SQL. 
track_activity_query_size = 2048

默认autovacuum就是打开的, log_autovacuum_min_duration = 0记录所有的autovacuum操作.
autovacuum = on
log_autovacuum_min_duration = 0

这个模块用于记录数据库中的最近的1000条SQL以及这些SQL的统计信息, 如执行了多少次, 总共耗时是多少. 一般用于发现业务上最频繁调用的SQL是什么, 有针对性的进行SQL优化.
shared_preload_libraries = 'pg_stat_statements'

现在的版本不需要设置custom_variable_classes
custom_variable_classes = 'pg_stat_statements'

auth_delay.milliseconds = 5000          # 认证失败, 延迟多少毫秒反馈
auto_explain.log_min_duration = 5000    # 记录超过多少毫秒的SQL当时的执行计划
auto_explain.log_analyze = true
auto_explain.log_verbose = true
auto_explain.log_buffers = true
auto_explain.log_nested_statements = true
pg_stat_statements.track_utility=off
pg_stat_statements.max = 1000
pg_stat_statements.track = all

其他参数值默认.
这些参数的详细解释如有疑问请参考PostgreSQL官方文档.

3. 新建数据库用户digoal, 库digoal. 并使用前面的测试模型新建表以及函数, 初始化数据.
   下面的测试过程中只测登陆部分, 未测试退出部分, 因为登陆过程已经包含了INSERT, UPDATE, SELECT. 基本上可以反映整个调优过程了.

【调优阶段1】
使用pgbench进行压力测试, 发现瓶颈并合理优化.
1. pgbench用到的登陆脚本
cat login.sql 
\setrandom userid 1 20000000
select userid,engname,cnname,occupation,birthday,signname,email,qq from user_info where userid=:userid;
insert into user_login_rec (userid,login_time,ip) values (:userid,now(),inet_client_addr());
update user_session set logintime=now(),login_count=login_count+1 where userid=:userid;

2. pgbench用到的退出脚本
cat logout.sql 
\setrandom userid 1 20000000
insert into user_logout_rec (userid,logout_time,ip) values (:userid,now(),inet_client_addr());
update user_session set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=:userid;

3. 压力测试
pgbench -M simple -r -c 8 -f /home/postgres/test/login.sql -j 8 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal

4. 压力测试结果
transaction type: Custom query
scaling factor: 1
query mode: simple
number of clients: 8
number of threads: 8
duration: 180 s
number of transactions actually processed: 62675
tps = 348.084647 (including connections establishing)
tps = 348.100337 (excluding connections establishing)
statement latencies in milliseconds:
        0.004577        \setrandom userid 1 20000000
        12.963789       select userid,engname,cnname,occupation,birthday,signname,email,qq from user_info where userid=:userid;
        5.540750        insert into user_login_rec (userid,login_time,ip) values (:userid,now(),inet_client_addr());
        4.457834        update user_session set logintime=now(),login_count=login_count+1 where userid=:userid;

5. 瓶颈分析与优化
压力测试中查看数据库服务器的iostat -x
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
           0.69    0.00    0.25   24.11    0.00   74.95

Device:         rrqm/s   wrqm/s   r/s   w/s   rsec/s   wsec/s avgrq-sz avgqu-sz   await  svctm  %util
cciss/c0d0        0.00     6.00  0.00  1.50     0.00    60.00    40.00     0.01    6.67   6.67   1.00
cciss/c0d0p1      0.00     6.00  0.00  1.50     0.00    60.00    40.00     0.01    6.67   6.67   1.00
cciss/c0d0p2      0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
cciss/c0d0p3      0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
cciss/c0d1        0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
cciss/c0d2        0.00   638.50 10.00 217.50   160.00  6444.00    29.03   152.58  707.89   4.40 100.10
cciss/c0d3        0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
cciss/c0d4        0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
cciss/c0d5        0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
dm-0              0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
dm-1              0.00     0.00 10.00 866.50   160.00  6932.00     8.09   446.26  510.49   1.14 100.10
dm-2              0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
dm-3              0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
dm-4              0.00     0.00  0.00  0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
操作系统的平均IO请求等待700多毫秒, PostgreSQL数据文件所处的块设备使用率100%. 存在严重的IO性能瓶颈.

使用pgfincore降低读的物理IO请求.
pgfincore的相关文章可参考如下,
《use posix_fadvise pre-cache frequency data》
http://blog.163.com/digoal@126/blog/static/163877040201062944945126/
《a powerful upgrade from pgfincore 1.0》
http://blog.163.com/digoal@126/blog/static/1638770402011630102117658/
《TOAST table with pgfincore》
http://blog.163.com/digoal@126/blog/static/16387704020120524144140/
pgfincore所起的作用类似EnterpriseDB的InfiniteCache或者熟悉Oracle的朋友可能更易于接受的KEEP BUFFER POOL.

-- 载入os cache
digoal=> select reltoastrelid from pg_class where relname='user_info';
 reltoastrelid 
---------------
         16424
(1 row)

digoal=> select relname from pg_class where oid=16424;
    relname     
----------------
 pg_toast_16421
(1 row)

digoal=> \c digoal postgres
seYou are now connected to database "digoal" as user "postgres".
digoal=# select * from pgfadvise_willneed('pg_toast.pg_toast_16421');
                   relpath                    | os_page_size | rel_os_pages | os_pages_free 
----------------------------------------------+--------------+--------------+---------------
 pg_tblspc/16385/PG_9.1_201105231/16386/16424 |         4096 |            0 |        243865
(1 row)

digoal=# select * from pgfadvise_willneed('digoal.user_info');
                    relpath                     | os_page_size | rel_os_pages | os_pages_free 
------------------------------------------------+--------------+--------------+---------------
 pg_tblspc/16385/PG_9.1_201105231/16386/16421   |         4096 |       262144 |        243834
 pg_tblspc/16385/PG_9.1_201105231/16386/16421.1 |         4096 |       262144 |        243834
 pg_tblspc/16385/PG_9.1_201105231/16386/16421.2 |         4096 |       244944 |        243834
(3 rows)

digoal=# select * from pgfadvise_willneed('digoal.user_session');
                    relpath                     | os_page_size | rel_os_pages | os_pages_free 
------------------------------------------------+--------------+--------------+---------------
 pg_tblspc/16385/PG_9.1_201105231/16386/16431   |         4096 |       262144 |        243834
 pg_tblspc/16385/PG_9.1_201105231/16386/16431.1 |         4096 |        33640 |        243834
(2 rows)

digoal=# select reltoastrelid from pg_class where relname='user_session';
 reltoastrelid 
---------------
             0
(1 row)

digoal=# select * from pgfadvise_willneed('digoal.pk_user_session');
                   relpath                    | os_page_size | rel_os_pages | os_pages_free 
----------------------------------------------+--------------+--------------+---------------
 pg_tblspc/16385/PG_9.1_201105231/16386/16438 |         4096 |       109680 |        243865
(1 row)

digoal=# select * from pgfadvise_willneed('digoal.pk_user_info');
                   relpath                    | os_page_size | rel_os_pages | os_pages_free 
----------------------------------------------+--------------+--------------+---------------
 pg_tblspc/16385/PG_9.1_201105231/16386/16436 |         4096 |       109680 |        235567
(1 row)

【调优阶段2】
1. 压力测试
pgbench -M simple -r -c 8 -f /home/postgres/test/login.sql -j 8 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal

2. 测试结果
transaction type: Custom query
scaling factor: 1
query mode: simple
number of clients: 8
number of threads: 8
duration: 180 s
number of transactions actually processed: 264895
tps = 1471.517096 (including connections establishing)
tps = 1471.585818 (excluding connections establishing)
statement latencies in milliseconds:
        0.004226        \setrandom userid 1 20000000
        0.459824        select userid,engname,cnname,occupation,birthday,signname,email,qq from user_info where userid=:userid;
        2.457797        insert into user_login_rec (userid,login_time,ip) values (:userid,now(),inet_client_addr());
        2.501684        update user_session set logintime=now(),login_count=login_count+1 where userid=:userid;

3. 瓶颈分析与优化
SELECT语句的延时已经通过上一个优化阶段下降到了0.45毫秒, INSERT和UPDATE语句的平均耗时也从原来的5.5和4.45下降到了2.5.
原因是select的请求在内存中命中了, 因此update和insert不需要和select争抢物理io请求, 处理效率自然有一定的提高.
但是INSERT和UPDATE的语句延时还有2.5毫秒存在很大的可优化空间.
开启PostgreSQL的异步提交日志.
synchronous_commit = off
wal_writer_delay = 10ms

与Oracle的异步日志差别请参考 : 
《PostgreSQL and Oracle's async commit》
http://blog.163.com/digoal@126/blog/static/16387704020121229223072/

【调优阶段3】
1. 压力测试
pgbench -M simple -r -c 8 -f /home/postgres/test/login.sql -j 8 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal

2. 测试结果
transaction type: Custom query
scaling factor: 1
query mode: simple
number of clients: 8
number of threads: 8
duration: 180 s
number of transactions actually processed: 685344
tps = 3751.377919 (including connections establishing)
tps = 3751.568948 (excluding connections establishing)
statement latencies in milliseconds:
        0.003474        \setrandom userid 1 20000000
        0.418716        select userid,engname,cnname,occupation,birthday,signname,email,qq from user_info where userid=:userid;
        0.511601        insert into user_login_rec (userid,login_time,ip) values (:userid,now(),inet_client_addr());
        1.188277        update user_session set logintime=now(),login_count=login_count+1 where userid=:userid;

3. 瓶颈分析与优化
客户端连接使用simple协议, 存在一定的可优化空间.
修改协议为extended, 查看性能提升.

【调优阶段4】
1. 压力测试
pgbench -M extended -r -c 8 -f /home/postgres/test/login.sql -j 8 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal

2. 测试结果
transaction type: Custom query
scaling factor: 1
query mode: extended
number of clients: 8
number of threads: 8
duration: 180 s
number of transactions actually processed: 970981
tps = 5394.015368 (including connections establishing)
tps = 5394.215477 (excluding connections establishing)
statement latencies in milliseconds:
        0.003345        \setrandom userid 1 20000000
        0.381675        select userid,engname,cnname,occupation,birthday,signname,email,qq from user_info where userid=:userid;
        0.296300        insert into user_login_rec (userid,login_time,ip) values (:userid,now(),inet_client_addr());
        0.792592        update user_session set logintime=now(),login_count=login_count+1 where userid=:userid;

3. 瓶颈分析与优化
客户端连接使用extended协议, 存在一定的可优化空间.
修改协议为prepared, 查看性能提升多少.
参见 : 
《PostgreSQL prepared statement: SPI_prepare, prepare|execute COMMAND, PL/pgsql STYLE: custom & generic plan cache》
http://blog.163.com/digoal@126/blog/static/1638770402012112452432251/

【调优阶段5】
1. 压力测试
pgbench -M prepared -r -c 8 -f /home/postgres/test/login.sql -j 8 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal

2. 测试结果
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 8
number of threads: 8
duration: 180 s
number of transactions actually processed: 1044186
tps = 5800.589330 (including connections establishing)
tps = 5800.902491 (excluding connections establishing)
statement latencies in milliseconds:
        0.003465        \setrandom userid 1 20000000
        0.319665        select userid,engname,cnname,occupation,birthday,signname,email,qq from user_info where userid=:userid;
        0.266931        insert into user_login_rec (userid,login_time,ip) values (:userid,now(),inet_client_addr());
        0.777822        update user_session set logintime=now(),login_count=login_count+1 where userid=:userid;

3. 瓶颈分析与优化
压力测试的脚本中使用的是普通的SQL语句, 未使用初始化时用到的登陆函数和退出函数. 使用普通SQL显然比使用函数多了交互的次数以及每次发送的数据包的大小.
使用函数看看性能能提升多少.

【调优阶段6】
1. 模拟用户登陆脚本
cat login.sql 
\setrandom userid 1 20000000
SELECT f_user_login(:userid);

2. 模拟用户退出脚本
cat logout.sql 
\setrandom userid 1 20000000
SELECT f_user_logout(:userid);

3. 压力测试
pgbench -M prepared -r -c 8 -f /home/postgres/test/login.sql -j 8 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal

4. 测试结果
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 8
number of threads: 8
duration: 180 s
number of transactions actually processed: 1616746
tps = 8981.596290 (including connections establishing)
tps = 8981.995800 (excluding connections establishing)
statement latencies in milliseconds:
        0.004012        \setrandom userid 1 20000000
        0.881060        SELECT f_user_login(:userid);

5. 瓶颈分析与优化
到这个时候看起来好像没什么好优化的了, 其实不然.
我们知道在整个登陆过程中用到了SELECT, UPDATE, INSERT.
其中UPDATE的表有一个PK索引, 每次更新需要修改数据表的同时还需要更新索引. 所以理论上这个更新操作表越小性能越高.
我们可以通过拆表来提升性能. 
提醒,阿里云 RDS PG已经提供了分区表功能,而且比社区版本的分区表性能提升100倍,用户可以选择RDS PG试一试。
http://yq.aliyun.com/articles/113

如下是社区版本的演示过程 : 
拆表 : 
create table user_info_0 (like user_info including all);
create table user_info_1 (like user_info including all);
create table user_info_2 (like user_info including all);
create table user_info_3 (like user_info including all);
create table user_info_4 (like user_info including all);

create table user_session_0 (like user_session including all);
create table user_session_1 (like user_session including all);
create table user_session_2 (like user_session including all);
create table user_session_3 (like user_session including all);
create table user_session_4 (like user_session including all);

插入初始化数据 : 
insert into user_info_0 (userid,engname,cnname,occupation,birthday,signname,email,qq,crt_time,mod_time)
select generate_series(1,4000000),
'digoal.zhou',
'德哥',
'DBA',
'1970-01-01'
,E'公益是一辈子的事, I\'m Digoal.Zhou, Just do it!',
'digoal@126.com',
276732431,
clock_timestamp(),
NULL;

insert into user_info_1 (userid,engname,cnname,occupation,birthday,signname,email,qq,crt_time,mod_time)
select generate_series(4000001,8000000),
'digoal.zhou',
'德哥',
'DBA',
'1970-01-01'
,E'公益是一辈子的事, I\'m Digoal.Zhou, Just do it!',
'digoal@126.com',
276732431,
clock_timestamp(),
NULL;

insert into user_info_2 (userid,engname,cnname,occupation,birthday,signname,email,qq,crt_time,mod_time)
select generate_series(8000001,12000000),
'digoal.zhou',
'德哥',
'DBA',
'1970-01-01'
,E'公益是一辈子的事, I\'m Digoal.Zhou, Just do it!',
'digoal@126.com',
276732431,
clock_timestamp(),
NULL;

insert into user_info_3 (userid,engname,cnname,occupation,birthday,signname,email,qq,crt_time,mod_time)
select generate_series(12000001,16000000),
'digoal.zhou',
'德哥',
'DBA',
'1970-01-01'
,E'公益是一辈子的事, I\'m Digoal.Zhou, Just do it!',
'digoal@126.com',
276732431,
clock_timestamp(),
NULL;

insert into user_info_4 (userid,engname,cnname,occupation,birthday,signname,email,qq,crt_time,mod_time)
select generate_series(16000001,20000000),
'digoal.zhou',
'德哥',
'DBA',
'1970-01-01'
,E'公益是一辈子的事, I\'m Digoal.Zhou, Just do it!',
'digoal@126.com',
276732431,
clock_timestamp(),
NULL;

insert into user_session_0 (userid) select generate_series(1,4000000);
insert into user_session_1 (userid) select generate_series(4000001,8000000);
insert into user_session_2 (userid) select generate_series(8000001,12000000);
insert into user_session_3 (userid) select generate_series(12000001,16000000);
insert into user_session_4 (userid) select generate_series(16000001,20000000);

创建索引
set work_mem='2048MB';
set maintenance_work_mem='2048MB';
alter table user_info_0 add primary key (userid);
alter table user_info_1 add primary key (userid);
alter table user_info_2 add primary key (userid);
alter table user_info_3 add primary key (userid);
alter table user_info_4 add primary key (userid);
alter table user_session_0 add primary key (userid);
alter table user_session_1 add primary key (userid);
alter table user_session_2 add primary key (userid);
alter table user_session_3 add primary key (userid);
alter table user_session_4 add primary key (userid);

同样通过pgfincore把他们加载到内存中, 这里不详细描述.
新建登陆和退出函数
create or replace function f_user_login_0
(i_userid int,
OUT o_userid int,
OUT o_engname text,
OUT o_cnname text,
OUT o_occupation text,
OUT o_birthday date,
OUT o_signname text,
OUT o_email text,
OUT o_qq numeric
)
as $BODY$
declare
begin
select userid,engname,cnname,occupation,birthday,signname,email,qq
into o_userid,o_engname,o_cnname,o_occupation,o_birthday,o_signname,o_email,o_qq
from user_info_0 where userid=i_userid;
insert into user_login_rec (userid,login_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_0 set logintime=now(),login_count=login_count+1 where userid=i_userid;
return;
end;
$BODY$
language plpgsql;

create or replace function f_user_login_1
(i_userid int,
OUT o_userid int,
OUT o_engname text,
OUT o_cnname text,
OUT o_occupation text,
OUT o_birthday date,
OUT o_signname text,
OUT o_email text,
OUT o_qq numeric
)
as $BODY$
declare
begin
select userid,engname,cnname,occupation,birthday,signname,email,qq
into o_userid,o_engname,o_cnname,o_occupation,o_birthday,o_signname,o_email,o_qq
from user_info_1 where userid=i_userid;
insert into user_login_rec (userid,login_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_1 set logintime=now(),login_count=login_count+1 where userid=i_userid;
return;
end;
$BODY$
language plpgsql;

create or replace function f_user_login_2
(i_userid int,
OUT o_userid int,
OUT o_engname text,
OUT o_cnname text,
OUT o_occupation text,
OUT o_birthday date,
OUT o_signname text,
OUT o_email text,
OUT o_qq numeric
)
as $BODY$
declare
begin
select userid,engname,cnname,occupation,birthday,signname,email,qq
into o_userid,o_engname,o_cnname,o_occupation,o_birthday,o_signname,o_email,o_qq
from user_info_2 where userid=i_userid;
insert into user_login_rec (userid,login_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_2 set logintime=now(),login_count=login_count+1 where userid=i_userid;
return;
end;
$BODY$
language plpgsql;

create or replace function f_user_login_3
(i_userid int,
OUT o_userid int,
OUT o_engname text,
OUT o_cnname text,
OUT o_occupation text,
OUT o_birthday date,
OUT o_signname text,
OUT o_email text,
OUT o_qq numeric
)
as $BODY$
declare
begin
select userid,engname,cnname,occupation,birthday,signname,email,qq
into o_userid,o_engname,o_cnname,o_occupation,o_birthday,o_signname,o_email,o_qq
from user_info_3 where userid=i_userid;
insert into user_login_rec (userid,login_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_3 set logintime=now(),login_count=login_count+1 where userid=i_userid;
return;
end;
$BODY$
language plpgsql;

create or replace function f_user_login_4
(i_userid int,
OUT o_userid int,
OUT o_engname text,
OUT o_cnname text,
OUT o_occupation text,
OUT o_birthday date,
OUT o_signname text,
OUT o_email text,
OUT o_qq numeric
)
as $BODY$
declare
begin
select userid,engname,cnname,occupation,birthday,signname,email,qq
into o_userid,o_engname,o_cnname,o_occupation,o_birthday,o_signname,o_email,o_qq
from user_info_4 where userid=i_userid;
insert into user_login_rec (userid,login_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_4 set logintime=now(),login_count=login_count+1 where userid=i_userid;
return;
end;
$BODY$
language plpgsql;

create or replace function f_user_logout_0
(i_userid int,
OUT o_result int
)
as $BODY$
declare
begin
insert into user_logout_rec (userid,logout_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_0 set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=i_userid;
o_result := 0;
return;
exception 
when others then
o_result := 1;
return;
end;
$BODY$
language plpgsql;

create or replace function f_user_logout_1
(i_userid int,
OUT o_result int
)
as $BODY$
declare
begin
insert into user_logout_rec (userid,logout_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_1 set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=i_userid;
o_result := 0;
return;
exception 
when others then
o_result := 1;
return;
end;
$BODY$
language plpgsql;

create or replace function f_user_logout_2
(i_userid int,
OUT o_result int
)
as $BODY$
declare
begin
insert into user_logout_rec (userid,logout_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_2 set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=i_userid;
o_result := 0;
return;
exception 
when others then
o_result := 1;
return;
end;
$BODY$
language plpgsql;

create or replace function f_user_logout_3
(i_userid int,
OUT o_result int
)
as $BODY$
declare
begin
insert into user_logout_rec (userid,logout_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_3 set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=i_userid;
o_result := 0;
return;
exception 
when others then
o_result := 1;
return;
end;
$BODY$
language plpgsql;

create or replace function f_user_logout_4
(i_userid int,
OUT o_result int
)
as $BODY$
declare
begin
insert into user_logout_rec (userid,logout_time,ip) values (i_userid,now(),inet_client_addr());
update user_session_4 set logouttime=now(),online_interval=online_interval+(now()-logintime) where userid=i_userid;
o_result := 0;
return;
exception 
when others then
o_result := 1;
return;
end;
$BODY$
language plpgsql;

【调优阶段7】
1. 登陆脚本
cat login*.sql
\setrandom userid 1 4000000
SELECT f_user_login_0(:userid);
\setrandom userid 4000001 8000000
SELECT f_user_login_1(:userid);
\setrandom userid 8000001 12000000
SELECT f_user_login_2(:userid);
\setrandom userid 12000001 16000000
SELECT f_user_login_3(:userid);
\setrandom userid 16000001 20000000
SELECT f_user_login_4(:userid);

2. 退出脚本
cat logout*.sql
\setrandom userid 1 4000000
SELECT f_user_logout_0(:userid);
\setrandom userid 4000001 8000000
SELECT f_user_logout_1(:userid);
\setrandom userid 8000001 12000000
SELECT f_user_logout_2(:userid);
\setrandom userid 12000001 16000000
SELECT f_user_logout_3(:userid);
\setrandom userid 16000001 20000000
SELECT f_user_logout_4(:userid);

3. 压力测试
pgbench -M prepared -r -c 1 -f /home/postgres/test/login0.sql -j 1 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal >./log.login0 &
pgbench -M prepared -r -c 1 -f /home/postgres/test/login1.sql -j 1 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal >./log.login1 &
pgbench -M prepared -r -c 2 -f /home/postgres/test/login2.sql -j 2 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal >./log.login2 &
pgbench -M prepared -r -c 2 -f /home/postgres/test/login3.sql -j 2 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal >./log.login3 &
pgbench -M prepared -r -c 2 -f /home/postgres/test/login4.sql -j 2 -n -T 180 -h 172.16.3.33 -p 1921 -U digoal digoal >./log.login4 &

4. 测试结果
cat log.log*
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 1
number of threads: 1
duration: 180 s
number of transactions actually processed: 233348
tps = 1281.818097 (including connections establishing)
tps = 1281.837109 (excluding connections establishing)
statement latencies in milliseconds:
        0.003492        \setrandom userid 1 4000000
        0.771932        SELECT f_user_login_0(:userid);
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 1
number of threads: 1
duration: 180 s
number of transactions actually processed: 233466
tps = 1282.514774 (including connections establishing)
tps = 1282.573500 (excluding connections establishing)
statement latencies in milliseconds:
        0.003546        \setrandom userid 4000001 8000000
        0.771399        SELECT f_user_login_1(:userid);
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 2
number of threads: 2
duration: 180 s
number of transactions actually processed: 475466
tps = 2612.200783 (including connections establishing)
tps = 2612.281526 (excluding connections establishing)
statement latencies in milliseconds:
        0.003605        \setrandom userid 8000001 12000000
        0.757312        SELECT f_user_login_2(:userid);
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 2
number of threads: 2
duration: 180 s
number of transactions actually processed: 468904
tps = 2576.380443 (including connections establishing)
tps = 2576.488485 (excluding connections establishing)
statement latencies in milliseconds:
        0.003587        \setrandom userid 12000001 16000000
        0.767869        SELECT f_user_login_3(:userid);
transaction type: Custom query
scaling factor: 1
query mode: prepared
number of clients: 2
number of threads: 2
duration: 180 s
number of transactions actually processed: 439381
tps = 2414.347086 (including connections establishing)
tps = 2414.425600 (excluding connections establishing)
statement latencies in milliseconds:
        0.004431        \setrandom userid 16000001 20000000
        0.817879        SELECT f_user_login_4(:userid);
总计 : 
tps = 10167.261183 (including connections establishing)
tps = 10167.261183 (excluding connections establishing)

5. 瓶颈分析与优化
到这里我们还没有关注过表空间, 其实这些表拆分后它们还在同一个表空间里面. 把它们放在不同的表空间可以扩展它们整体的IO吞吐能力.
postgres=# \db+
                                           List of tablespaces
    Name    |  Owner   |                  Location                   |  Access privileges  | Description 
------------+----------+---------------------------------------------+---------------------+-------------
 digoal     | postgres | /pgdata/digoal/1921/data02/pg_tbs/digoal    | postgres=C/postgres+| 
            |          |                                             | digoal=C/postgres   | 
 digoal_01  | postgres | /pgdata/digoal/1921/data03/pg_tbs/digoal_01 | postgres=C/postgres+| 
            |          |                                             | digoal=C/postgres   | 
 digoal_02  | postgres | /pgdata/digoal/1921/data04/pg_tbs/digoal_02 | postgres=C/postgres+| 
            |          |                                             | digoal=C/postgres   | 
 digoal_03  | postgres | /pgdata/digoal/1921/data05/pg_tbs/digoal_03 | postgres=C/postgres+| 
            |          |                                             | digoal=C/postgres   | 
 digoal_04  | postgres | /pgdata/digoal/1921/data06/pg_tbs/digoal_04 | postgres=C/postgres+| 
            |          |                                             | digoal=C/postgres   | 
digoal=> alter table user_info_0 set tablespace digoal_04;
ALTER TABLE
digoal=> alter table user_info_2 set tablespace digoal_01;
ALTER TABLE
digoal=> alter table user_info_3 set tablespace digoal_02;
ALTER TABLE
digoal=> alter table user_info_4 set tablespace digoal_03;

digoal=> alter index user_info_0_pkey set tablespace digoal_04;
ALTER INDEX
digoal=> alter index user_info_2_pkey set tablespace digoal_01;
ALTER INDEX
digoal=> alter index user_info_3_pkey set tablespace digoal_02;
ALTER INDEX
digoal=> alter index user_info_4_pkey set tablespace digoal_03;

digoal=> alter table user_session_0 set tablespace digoal_04;
ALTER TABLE
digoal=> alter table user_session_2 set tablespace digoal_01;
ALTER TABLE
digoal=> alter table user_session_3 set tablespace digoal_02;
ALTER TABLE
digoal=> alter table user_session_4 set tablespace digoal_03;

digoal=> alter index user_session_0_pkey set tablespace digoal_04;
ALTER INDEX
digoal=> alter index user_session_2_pkey set tablespace digoal_01;
ALTER INDEX
digoal=> alter index user_session_3_pkey set tablespace digoal_02;
ALTER INDEX
digoal=> alter index user_session_4_pkey set tablespace digoal_03;

重新把它们加载到内存.
未完待续。

图一 :
1044272163613848422

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
2月前
|
存储 缓存 负载均衡
mysql的性能优化
在数据库设计中,应选择合适的存储引擎(如MyISAM或InnoDB)、字段类型(如char、varchar、tinyint),并遵循范式(1NF、2NF、3NF)。功能上,可以通过索引优化、缓存和分库分表来提升性能。架构上,采用主从复制、读写分离和负载均衡可进一步提高系统稳定性和扩展性。
45 9
|
7月前
|
存储 关系型数据库 MySQL
MySQL数据库进阶第三篇(MySQL性能优化)
MySQL数据库进阶第三篇(MySQL性能优化)
|
4月前
|
存储 SQL 关系型数据库
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
MySQL调优主要分为三个步骤:监控报警、排查慢SQL、MySQL调优。 排查慢SQL:开启慢查询日志 、找出最慢的几条SQL、分析查询计划 。 MySQL调优: 基础优化:缓存优化、硬件优化、参数优化、定期清理垃圾、使用合适的存储引擎、读写分离、分库分表; 表设计优化:数据类型优化、冷热数据分表等。 索引优化:考虑索引失效的11个场景、遵循索引设计原则、连接查询优化、排序优化、深分页查询优化、覆盖索引、索引下推、用普通索引等。 SQL优化。
726 15
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
|
3月前
|
存储 关系型数据库 MySQL
MySQL性能优化实践指南
【10月更文挑战第16天】MySQL性能优化实践指南
232 0
|
3月前
|
存储 关系型数据库 MySQL
MySQL性能优化指南
【10月更文挑战第16天】MySQL性能优化指南
289 0
|
4月前
|
存储 关系型数据库 MySQL
mysql-性能优化(一)
mysql-性能优化(一)
|
4月前
|
关系型数据库 MySQL 数据处理
针对MySQL亿级数据的高效插入策略与性能优化技巧
在处理MySQL亿级数据的高效插入和性能优化时,以上提到的策略和技巧可以显著提升数据处理速度,减少系统负担,并保持数据的稳定性和一致性。正确实施这些策略需要深入理解MySQL的工作原理和业务需求,以便做出最适合的配置调整。
484 6
|
4月前
|
SQL 存储 关系型数据库
深入 MySQL 的执行计划与性能优化
深入 MySQL 的执行计划与性能优化
50 0
|
5月前
|
SQL 关系型数据库 Linux
在CentOS 6上安装和使用PostgreSQL的方法
在CentOS 6上安装和使用PostgreSQL的方法
75 2
|
5月前
|
Ubuntu 关系型数据库 数据库
在Ubuntu 18.04上安装和使用PostgreSQL的方法
在Ubuntu 18.04上安装和使用PostgreSQL的方法
90 1

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版