人工智能不再是未来,机器学习靠什么来实现?

简介:

随着科学技术的迅猛发展,人们想用机器做越来越多的事,人们能做的,不能做的,懒得做的,统统都想让机器来帮助完成。“人工智能”这个曾经只能出现在好莱坞科幻电影里的事,已经变得不再遥远,而这一研究也都在各行各业开始启动。在通往人工智能的路上, 机器学习是核心,与传统电脑的计算模式不同,机器学习是将输入和结果告诉电脑,由电脑来识别规则、产生程序,从而承担大量的编程工作。

谈到机器学习,我们很容易想到前段时间谷歌AlphaGo大胜围棋名家李世石的事情,这件事展现了大数据云时代机器学习的强大实力。尽管如此,目前机器学习仍然在早期探索阶段,但其巨大潜力早已经受到各方关注。借着当今风靡全球的“大数据”春风,作为人工智能领域重要方向的机器学习,逐渐成为技术创新的生力军。

人工智能不再是未来,机器学习靠什么来实现?

机器学习前景这么好,我们靠什么去实现呢?两个核心:首先是必须具备足够强大的数据库;其次,必须 具备足够强大的计算能力。随着数据采集技术的飞速发展,每一个从网络获取信息的用户,都成为提供新的信息的源头,数据源的日益丰富引发数据规模爆炸性增 长。大规模数据一方面为精准定位用户需求提供更多可能性,但也为快速有效处理数据带来更多的挑战。采用GPU方式能很好处理深度神经网络问题,因为机器学习算法通常需要海量计算来处理数据(图像、文本等),和提取数据对象的确定特征。尤其是在训练阶段,模型或算法为了调整精度,需要处理大量数据。而GPU是非常擅长于管理一些比较复杂的数据,像视频、音频的数据等。

人工智能不再是未来,机器学习靠什么来实现?

如今,GPU加速技术已经应用在了社会的方方面面,除了传统的科研院所和高校教育机构之外,包括游戏、汽车、医疗、勘探、VR和互联网等各行各业中都出现了GPU加速的身影。

人们利用 GPU 来训练这些深度神经网络,所使用的训练集大得多,所耗费的时间大幅缩短,占用的数据中心基础设施也少得多。GPU 还被用于运行这些机器学习训练模型,以便在云端进行分类和预测,从而在耗费功率更低、占用基础设施更少的情况下能够支持远比从前更大的数据量和吞吐量。宝 德作为国内首屈一指的HPC解决方案提供商,基于对市场的敏感度与洞察力,在拥抱深度学习和机器学习上非常积极。针对各类客户对于GPU服务器的不同需求层层细分,宝德在2015年将8款全新一代高密度GPU加速计算服务器隆重推向市场,以充分满足不同客户不同应用场景的使用需求。

宝德推出的全新一代高密度GPU加速计算服务器适用于高性能计算、数据挖掘、机器学习、大数据分 析、互联网、金融等关键应用场景,为各行业客户提供了全方位的计算解决方案,通过GPU承担部分预算量繁重且耗时的代码,为运行在CPU上的应用程序加 速,足以帮助企业完成更多计算任务、处理更大数据集、缩短应用运行时间。

GPU加速计算服务器将是实现机器学习和人工智能的必由之路。机器学习领域的突破引发了人工智 能革命,也将对服务器行业带来巨大的影响。只有具备强大的研发能力和高度的市场敏感度和洞察力的服务器厂商才能快速拥抱这场人工智能革命,满足市场需求。 在这场变革中,未来谁主沉浮,我们拭目以待!


原文发布时间为:2016年5月23日

本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
23天前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
86 27
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
51 12
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
109 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
探索人工智能与机器学习的融合之路
在本文中,我们将探讨人工智能(AI)与机器学习(ML)之间的紧密联系以及它们如何共同推动技术革新。我们将深入分析这两种技术的基本概念、发展历程和当前的应用趋势,同时讨论它们面临的挑战和未来的发展方向。通过具体案例研究,我们旨在揭示AI与ML结合的强大潜力,以及这种结合如何为各行各业带来革命性的变化。
48 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与机器学习的边界####
本文深入探讨了人工智能(AI)与机器学习(ML)领域的最新进展,重点分析了深度学习技术如何推动AI的边界不断扩展。通过具体案例研究,揭示了这些技术在图像识别、自然语言处理和自动驾驶等领域的应用现状及未来趋势。同时,文章还讨论了当前面临的挑战,如数据隐私、算法偏见和可解释性问题,并提出了相应的解决策略。 ####
|
2月前
|
机器学习/深度学习 数据采集 人工智能
人工智能与机器学习:解锁数据洞察力的钥匙
人工智能与机器学习:解锁数据洞察力的钥匙
|
2月前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
92 0