基于微博数据用Python打造一颗“心”

简介:

一年一度的虐狗节终于过去了,朋友圈各种晒,晒自拍,晒娃,晒美食,秀恩爱的。程序员在晒什么,程序员在加班。但是礼物还是少不了的,送什么好?作为程序员,我准备了一份特别的礼物,用以往发的微博数据打造一颗“爱心”,我想她一定会感动得哭了吧。哈哈

准备工作

有了想法之后就开始行动了,自然最先想到的就是用 Python 了,大体思路就是把微博数据爬下来,数据经过清洗加工后再进行分词处理,处理后的数据交给词云工具,配合科学计算工具和绘图工具制作成图像出来,涉及到的工具包有:

requests 用于网络请求爬取微博数据,结巴分词进行中文分词处理,词云处理库 wordcloud,图片处理库 Pillow,科学计算工具 NumPy ,类似于 MATLAB 的 2D 绘图库 Matplotlib

工具安装

安装这些工具包时,不同系统平台有可能出现不一样的错误,wordcloud,requests,jieba 都可以通过普通的 pip 方式在线安装,

pip install wordcloud pip install requests pip install jieba 

在Windows 平台安装 Pillow,NumPy,Matplotlib 直接用 pip 在线安装会出现各种问题,推荐的一种方式是在一个叫 Python Extension Packages for Windows 1 的第三方平台下载 相应的 .whl 文件安装。可以根据自己的系统环境选择下载安装 cp27 对应 python2.7,amd64 对应 64 位系统。下载到本地后进行安装

pip install Pillow-4.0.0-cp27-cp27m-win_amd64.whl pip install scipy-0.18.0-cp27-cp27m-win_amd64.whl pip install numpy-1.11.3+mkl-cp27-cp27m-win_amd64.whl pip install matplotlib-1.5.3-cp27-cp27m-win_amd64.whl 

其他平台可根据错误提示 Google 解决。或者直接基于 Anaconda 开发,它是 Python 的一个分支,内置了大量科学计算、机器学习的模块 。

获取数据

新浪微博官方提供的 API 是个渣渣,只能获取用户最新发布的5条数据,退而求其次,使用爬虫去抓取数据,抓取前先评估难度,看看是否有人写好了,在GitHub逛了一圈,基本没有满足需求的。倒是给我提供了一些思路,于是决定自己写爬虫。使用 http://m.weibo.cn/ 移动端网址去爬取数据。发现接口 http://m.weibo.cn/index/my?format=cards&page=1 可以分页获取微博数据,而且返回的数据是 json 格式,这样就省事很多了,不过该接口需要登录后的 cookies 信息,登录自己的帐号就可以通过 Chrome 浏览器 找到 Cookies 信息。

Python

实现代码:

def fetch_weibo():     api = "http://m.weibo.cn/index/my?format=cards&page=%s"     for i in range(1, 102):         response = requests.get(url=api % i, cookies=cookies)         data = response.json()[0]         groups = data.get("card_group") or []         for group in groups:             text = group.get("mblog").get("text")             text = text.encode("utf-8")             text = cleanring(text).strip()             yield text 

查看微博的总页数是101,考虑到一次性返回一个列表对象太费内存,函数用 yield 返回一个生成器,此外还要对文本进行数据清洗,例如去除标点符号,HTML 标签,“转发微博”这样的字样。

保存数据

数据获取之后,我们要把它离线保存起来,方便下次重复使用,避免重复地去爬取。使用 csv 格式保存到 weibo.csv 文件中,以便下一步使用。数据保存到 csv 文件中打开的时候可能为乱码,没关系,用 notepad++查看不是乱码。

def write_csv(texts):     with codecs.open('weibo.csv', 'w') as f:         writer = csv.DictWriter(f, fieldnames=["text"])         writer.writeheader()         for text in texts:             writer.writerow({"text": text})  def read_csv():     with codecs.open('weibo.csv', 'r') as f:         reader = csv.DictReader(f)         for row in reader:             yield row['text'] 

分词处理

从 weibo.csv 文件中读出来的每一条微博进行分词处理后再交给 wordcloud 生成词云。结巴分词适用于大部分中文使用场景,使用停止词库 stopwords.txt 把无用的信息(比如:的,那么,因为等)过滤掉。

def word_segment(texts):     jieba.analyse.set_stop_words("stopwords.txt")     for text in texts:         tags = jieba.analyse.extract_tags(text, topK=20)         yield " ".join(tags) 

生成图片

数据分词处理后,就可以给 wordcloud 处理了,wordcloud 根据数据里面的各个词出现的频率、权重按比列显示关键字的字体大小。生成方形的图像,如图:

Python

是的,生成的图片毫无美感,毕竟是要送人的也要拿得出手才好炫耀对吧,那么我们找一张富有艺术感的图片作为模版,临摹出一张漂亮的图出来。我在网上搜到一张“心”型图:

Python

生成图片代码:

def generate_img(texts):     data = " ".join(text for text in texts)     mask_img = imread('./heart-mask.jpg', flatten=True)     wordcloud = WordCloud(         font_path='msyh.ttc',         background_color='white',         mask=mask_img     ).generate(data)     plt.imshow(wordcloud)     plt.axis('off')     plt.savefig('./heart.jpg', dpi=600) 

需要注意的是处理时,需要给 matplotlib 指定中文字体,否则会显示乱码,找到字体文件夹:C:\Windows\Fonts\Microsoft YaHei UI复制该字体,拷贝到 matplotlib 安装目录:C:\Python27\Lib\site-packages\matplotlib\mpl-data\fonts\ttf 下

差不多就这样。

Python

当我自豪地把这张图发给她的时候,出现了这样的对话:

这是什么?
我:爱心啊,亲手做的
这么专业,好感动啊,你的眼里只有 python ,没有我 (哭笑)
我:明明是“心”中有 python 啊

我好像说错了什么,哈哈哈。


本文作者:VTtalk

来源:51CTO

相关文章
|
8天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能数据隐私保护
使用Python实现深度学习模型:智能数据隐私保护 【10月更文挑战第3天】
34 0
|
7天前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
21 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
7天前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
27 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
|
8天前
|
数据可视化 算法 Python
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
本文介绍了如何利用Python脚本结合动态模态分解(DMD)技术,分析从OpenFOAM模拟中提取的二维切片数据,以深入理解流体动力学现象。通过PyVista库处理VTK格式的模拟数据,进行POD和DMD分析,揭示流场中的主要能量结构及动态特征。此方法为研究复杂流动系统提供了有力工具。
20 2
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
|
4天前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
21 2
|
4天前
|
JSON 安全 数据安全/隐私保护
深度剖析:Python如何运用OAuth与JWT,为数据加上双保险🔐
【10月更文挑战第10天】本文介绍了OAuth 2.0和JSON Web Tokens (JWT) 两种现代Web应用中最流行的认证机制。通过使用Flask-OAuthlib和PyJWT库,详细展示了如何在Python环境中实现这两种认证方式,从而提升系统的安全性和开发效率。OAuth 2.0适用于授权过程,JWT则简化了认证流程,确保每次请求的安全性。结合两者,可以构建出既安全又高效的认证体系。
16 1
|
11天前
|
数据采集 存储 监控
如何使用 Python 爬取商品数据
如何使用 Python 爬取京东商品数据
26 3
|
11天前
|
数据采集 机器学习/深度学习 数据挖掘
数据也需SPA?Python转换大法,给你的数据做个全身放松SPA!
【10月更文挑战第4天】在数字化时代,数据犹如企业的血液,贯穿于各项业务之中。就像人需要定期SPA恢复活力,数据也需要“转换大法”来优化结构和提升质量,从而更好地支持决策分析与机器学习。本文探讨了如何使用Python进行数据SPA,包括理解需求、数据清洗、格式转换及聚合分析等步骤。通过Python强大的Pandas库,我们可以轻松完成缺失值填充、重复记录删除等任务,并实现数据格式的标准化,确保数据更加整洁、有序,助力高效分析与决策。为企业数据注入新的活力,迎接更多挑战。
15 1
|
12天前
|
数据采集 存储 监控
如何使用 Python 爬取京东商品数据
如何使用 Python 爬取京东商品数据
22 2
|
10天前
|
数据采集 监控 数据可视化
用Python构建动态折线图:实时展示爬取数据的指南
本文介绍了如何利用Python的爬虫技术从“财富吧”获取中国股市的实时数据,并使用动态折线图展示股价变化。文章详细讲解了如何通过设置代理IP和请求头来绕过反爬机制,确保数据稳定获取。通过示例代码展示了如何使用`requests`和`matplotlib`库实现这一过程,最终生成每秒自动更新的动态股价图。这种方法不仅适用于股市分析,还可广泛应用于其他需要实时监控的数据源,帮助用户快速做出决策。