Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图

简介: 这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。

1.将不同的图绘制在一起

import cv2
import numpy as np

def mul_pics(img1,img2,img3,img4,img5,img6,img7,img8):
    """为了结合多张图绘制成一张图 利用 np.hstack、np.vstack实现一幅图像中显示多幅图片"""
    results = (img1,img2,img3,img4)
    results1 = (img5,img6,img7,img8)
    # np.hstack()将两个数组按列放到一起
    line1 = np.hstack(results[:2])
    line2 = np.hstack(results[2:4])
    line3 = np.hstack(results1[:2])
    line4 = np.hstack(results1[2:4])
    combined = np.vstack([line1, line2])  # 将多个数组按行放到一起
    combined1 = np.vstack([line3, line4])  # 将多个数组按行放到一起
    cv2.namedWindow('Result', cv2.WINDOW_NORMAL)
    cv2.namedWindow('Result1', cv2.WINDOW_NORMAL)
    cv2.imshow('Result', combined)
    cv2.imshow('Result1', combined1)
    cv2.imwrite('F:\epycharm\HSB_match\pic\Result_a1_a4.jpg',combined)
    cv2.imwrite('F:\epycharm\HSB_match\pic\Result_a4_a8.jpg',combined1)
    cv2.waitKey(0)

# img1 = cv2.imread('F:\epycharm\HSB_match\pic\A1.png',cv2.IMREAD_COLOR)
# img2 = cv2.imread('F:\epycharm\HSB_match\pic\A2.png',cv2.IMREAD_COLOR)
# img3 = cv2.imread('F:\epycharm\HSB_match\pic\A3.png',cv2.IMREAD_COLOR)
# img4 = cv2.imread('F:\epycharm\HSB_match\pic\A4.png',cv2.IMREAD_COLOR)
# img5 = cv2.imread('F:\epycharm\HSB_match\pic\A5.png',cv2.IMREAD_COLOR)
# img6 = cv2.imread('F:\epycharm\HSB_match\pic\A6.png',cv2.IMREAD_COLOR)
# img7 = cv2.imread('F:\epycharm\HSB_match\pic\A7.png',cv2.IMREAD_COLOR)
# img8 = cv2.imread('F:\epycharm\HSB_match\pic\A8.png',cv2.IMREAD_COLOR)
# mul_pics(img1,img2,img3,img4,img5,img6,img7,img8)

2.将不同txt文档中的数据绘制多条折线图

在这里插入图片描述

import matplotlib.pyplot as plt

file = open('F:\epycharm\HSB_match\excel_file\决策树.txt')  #决策
file1 = open('F:\epycharm\HSB_match\excel_file\随机森林20.txt')  #随机-20
file2 = open('F:\epycharm\HSB_match\excel_file\随机森林25.txt')  #随机-25
file3 = open('F:\epycharm\HSB_match\excel_file\随机森林30.txt')  #随机-30

data = file.readlines() #读取文档数据
data1 = file1.readlines() #读取文档数据
data2 = file2.readlines() #读取文档数据
data3 = file3.readlines() #读取文档数据

para_1 = []  #新建列表,决策
para_2 = []  #新建列表,随机-25
para_3 = []  #新建列表,随机-20
para_4 = []  #新建列表,随机-30
for num in data:
    # split用于将每一行数据用逗号分割成多个对象
    #取分割后的第0列,转换成float格式后添加到para_1列表中
    para_1.append(float(num.split(',')[0]))
for num in data1:
    # split用于将每一行数据用逗号分割成多个对象
    # 取分割后的第0列,转换成float格式后添加到para_1列表中
    para_2.append(float(num.split(',')[0]))
for num in data2:
    # split用于将每一行数据用逗号分割成多个对象
    #取分割后的第0列,转换成float格式后添加到para_1列表中
    para_3.append(float(num.split(',')[0]))
for num in data3:
    # split用于将每一行数据用逗号分割成多个对象
    #取分割后的第0列,转换成float格式后添加到para_1列表中
    para_4.append(float(num.split(',')[0]))

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
para_1.sort()
# for i in range(len(para_1)):
#     f = open('F:\epycharm\HSB_match\excel_file\data2.txt', 'a')
#     f.write(str(i))
#     f.write('\n')
#
para_2.sort()
para_3.sort()
print(min(para_1))
print(max(para_1))
print('............')
print(min(para_2))
print(max(para_2))
print('............')
print(min(para_3))
print(max(para_3))
print('............')
para_4.sort()

# for i in range(len(para_2)):
#     f = open('F:\epycharm\HSB_match\excel_file\data3.txt', 'a')
#     f.write(str(i))
#     f.write('\n')
plt.figure()
plt.xlabel('steps', fontsize=10)  # x轴表示
plt.ylabel('R2_score', fontsize=10)  # y轴表示
plt.title('决策树R2分数对比图')
plt.plot(para_1,markerfacecolor='r',label='决策树')
plt.plot(para_2,markerfacecolor='b',label='随机森林-20')
plt.plot(para_3,markerfacecolor='b',label='随机森林-25')
# plt.plot(para_4,markerfacecolor='b',label='随机森林-30')
plt.legend()
plt.show()

如果对于一行有两个数据

def loadData0(flieName1, flieName2):
    inFile1 = open(flieName1, 'r')  # 以只读方式打开某fileName文件
    inFile2 = open(flieName2, 'r')
    # 定义两个空list,用来存放文件中的数据
    x = []
    y = []

    for index, line in enumerate(inFile1):
        x.append(float(line))
    for index, line in enumerate(inFile2):
        y.append(float(line))

    return x, y  # 注意,若返回的为元组(x, y),则画图的时候python不能区分大小
目录
相关文章
|
1月前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
1月前
|
存储 JSON 算法
Python集合:高效处理无序唯一数据的利器
Python集合是一种高效的数据结构,具备自动去重、快速成员检测和无序性等特点,适用于数据去重、集合运算和性能优化等场景。本文通过实例详解其用法与技巧。
97 0
|
21天前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
23天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
1月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
23天前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
191 102
|
23天前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
196 104
|
23天前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
185 103
|
23天前
|
机器学习/深度学习 人工智能 数据挖掘
Python:现代编程的首选语言
Python:现代编程的首选语言
132 82
|
23天前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的多面手
Python:现代编程的多面手
32 0

推荐镜像

更多