使用Python提供高性能计算服务

简介:


前言

python具有丰富的库,并且很容易作为胶水语言很容易与c/c++进行交互集成。

因此为了适应快速变化的业务和兼顾计算效率,在上层采用python作为server提供service,在底层采用c/c++进行计算是一种对于算法开发者非常适宜的方式。

python flask库提供http接口以及相关demo页面,gunicorn提供多核并行能力,底层c++库提供单线程上的计算。

下面通过一个例子说明这种架构。代码地址:python_hps

准备

在实验开始之前,需要安装flask、gunicorn、apach bench tool等工具。

注:所有实验均在linux系统中进行。测试机器为4核虚拟机。


 
 
  1. sudo pip install flask 
  2. sudo pip install gunicorn 
  3. sudo apt-get install apache2-utils 

计算

计算部分模拟真实计算,因此计算量比较大,在我测试的虚拟机上单核单线程跑400ms左右。

c++核心计算部分,随便写的:


 
 
  1. API_DESC int foo(const int val) 
  2.     float result = 0.0f; 
  3.     for(int c=0;c<1000;c++) 
  4.     { 
  5.         for(int i=0;i<val;i++) 
  6.         { 
  7.             result += (i); 
  8.             result += sqrt((float)(i*i)); 
  9.             result += pow((float)(i*i*i),0.1f); 
  10.         } 
  11.     } 
  12.     return (int)result; 

python wrapper,采用ctypes:


 
 
  1. #python wrapper of libfoo 
  2. class FooWrapper: 
  3.     def __init__(self): 
  4.         cur_path = os.path.abspath(os.path.dirname(__file__)) 
  5.         self.module = ctypes.CDLL(os.path.join(cur_path,'./impl/libfoo.so')) 
  6.     def foo(self,val):     
  7.         self.module.foo.argtypes = (ctypes.c_int,) 
  8.         self.module.foo.restype = ctypes.c_int 
  9.         result = self.module.foo(val) 
  10.         return result 

flask http API:


 
 
  1. @app.route('/api/foo',methods=['GET','POST']) 
  2. def handle_api_foo(): 
  3.     #get input 
  4.     val = flask.request.json['val'
  5.     logging.info('[handle_api_foo] val: %d' % (val)) 
  6.     #do calc 
  7.     result = fooWrapper.foo(val) 
  8.     logging.info('[handle_api_foo] result: %d' % (result)) 
  9.     result = json.dumps({'result':result}) 
  10.     return result 

单核服务

首先测试python单核服务,同时也是单线程服务(由于python GIL的存在,python多线程对于计算密集型任务几乎起反作用)。

  • 启动服务

在script目录下执行run_single.sh,即


 
 
  1. #!/bin/sh 
  2. #python 
  3. export PYTHONIOENCODING=utf-8 
  4. #start server 
  5. cd `pwd`/.. 
  6. echo "run single pocess server" 
  7. python server.py 
  8. cd - 
  9. echo "server is started." 
  • 测试服务

另外打开一个终端,执行script目录下的bench.sh,即


 
 
  1. #!/bin/sh 
  2. ab -T 'application/json' -p post.data -n 100 -c 10 http://127.0.0.1:4096/api/foo 
  • 测试结果

CPU运转

ab测试结果

可以看出CPU只用了1个核,负载是2.44 request/second。

多核

  • 启动服务

在script目录下执行run_parallel.sh,即


 
 
  1. #!/bin/sh 
  2. #python 
  3. export PYTHONIOENCODING=utf-8 
  4. #start server 
  5. cd `pwd`/.. 
  6. echo "run parallel pocess server" 
  7. gunicorn -c gun.conf server:app 
  8. cd - 
  9. echo "server is started." 

其中gun.conf是一个python脚本,配置了gunicorn的一些参数,如下:


 
 
  1. import multiprocessing 
  2. bind = '0.0.0.0:4096' 
  3. workers = max(multiprocessing.cpu_count()*2+1,1) 
  4. backlog = 2048 
  5. worker_class = "sync" 
  6. debug = False 
  7. proc_name = 'foo_server' 
  • 测试服务

另外打开一个终端,执行script目录下的bench.sh,即


 
 
  1. #!/bin/sh 
  2. ab -T 'application/json' -p post.data -n 100 -c 10 http://127.0.0.1:4096/api/foo 
  • 测试结果

CPU运转

ab测试结果

可以看出CPU用满了4个核,负载是8.56 request/second。是单核的3.5倍左右,可以任务基本达成多核有效利用的的目的。

总结

使用flask、gunicorn基本可以搭建一个用于调试或者不苛责过多性能的服务,用于算法服务提供非常方便。本文提供该方案的一个简单示例,实际业务中可基于此进行修改完善。



作者:自律所以自由

来源:51CTO

相关文章
|
3月前
|
NoSQL Unix 网络安全
【Azure Cache for Redis】Python Django-Redis连接Azure Redis服务遇上(104, 'Connection reset by peer')
【Azure Cache for Redis】Python Django-Redis连接Azure Redis服务遇上(104, 'Connection reset by peer')
【Azure Cache for Redis】Python Django-Redis连接Azure Redis服务遇上(104, 'Connection reset by peer')
|
4天前
|
机器学习/深度学习 自然语言处理 API
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程。通过简单的代码示例,展示如何将文本转换为自然流畅的语音,适用于有声阅读、智能客服等场景。
26 3
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
使用Python实现深度学习模型:智能客户服务与支持
使用Python实现深度学习模型:智能客户服务与支持
32 6
|
1月前
|
网络协议 Python
|
2月前
|
Kubernetes API 开发工具
【Azure Developer】通过SDK(for python)获取Azure服务生命周期信息
需要通过Python SDK获取Azure服务的一些通知信息,如:K8S版本需要更新到指定的版本,Azure服务的维护通知,服务处于不健康状态时的通知,及相关的操作建议等内容。
45 18
|
25天前
|
机器学习/深度学习 数据采集 自然语言处理
摘要分享服务python版
【10月更文挑战第3天】本文介绍了将链接转换为标题和内容摘要的技术,包括抽取式和生成式摘要方法。抽取式摘要通过提取关键句子生成摘要,而生成式摘要则通过理解语义生成新句子。文中还详细描述了链接预览生成的实现过程,从链接识别到内容解析,再到预览卡片生成,并提供了Python代码示例。这些技术提高了信息的可读性和访问效率。
11 0
|
3月前
|
API 开发工具 网络架构
【Azure Developer】使用Python SDK去Azure Container Instance服务的Execute命令的疑问解释
【Azure Developer】使用Python SDK去Azure Container Instance服务的Execute命令的疑问解释
【Azure Developer】使用Python SDK去Azure Container Instance服务的Execute命令的疑问解释
|
3月前
|
API 开发工具 网络架构
【Azure Developer】使用Python SDK去Azure Container Instance服务的Execute命令的疑问解释
Azure 容器实例(Azure Container Instances,简称 ACI)是一个无服务器容器解决方案,允许用户在 Azure 云环境中运行 Docker 容器,而无需设置虚拟机、集群或编排器。 ACI 适用于任何可以在隔离容器中操作的场景,包括事件驱动的应用程序、从容器开发管道快速部署、数据处理和生成作业。
|
3月前
|
Python
[python]使用gunicorn部署fastapi服务
[python]使用gunicorn部署fastapi服务
150 1
|
3月前
|
Java 缓存 数据库连接
揭秘!Struts 2性能翻倍的秘诀:不可思议的优化技巧大公开
【8月更文挑战第31天】《Struts 2性能优化技巧》介绍了提升Struts 2 Web应用响应速度的关键策略,包括减少配置开销、优化Action处理、合理使用拦截器、精简标签库使用、改进数据访问方式、利用缓存机制以及浏览器与网络层面的优化。通过实施这些技巧,如懒加载配置、异步请求处理、高效数据库连接管理和启用GZIP压缩等,可显著提高应用性能,为用户提供更快的体验。性能优化需根据实际场景持续调整。
72 0

热门文章

最新文章

下一篇
无影云桌面