DeepMind 弹性权重巩固算法让 AI 拥有“记忆” ,将成机器高效学习的敲门砖

简介:

DeepMind 弹性权重巩固算法让 AI 拥有“记忆” ,将成机器高效学习的敲门砖

一直以来,计算机程序都是个“左耳进,右耳出”的“傻小子”,它们很快就会忘掉所做过的任务。DeepMind 决定改变传统的学习法则,让程序在学习新任务时也不忘掉旧任务。在追逐更智能程序的道路上,这是很重要的一步,能渐进学习的程序才能适应更多任务。

眼下,在解决文本翻译、图像分类和图像生成等任务时,深度神经网络是机器学习中最成功最有效的方式。不过,只有将数据一股脑地塞给它,深度神经网络才能变得“多才多艺”。

神经网络输入时,它会在数字神经元与输出方案之间建立联系,而当它学习新事物时,神经网络不得不重新建立新的联系,同时有效覆盖旧的联系。这样的情况被称之为“灾难性忘却”(catastrophic forgetting),业内普遍认为这是阻碍神经网络技术不断进步的最大绊脚石。

与深度神经网络相比,人类大脑的工作方式就大不相同。我们可以渐进式的学习,一次掌握一些技巧,在学习新技巧时,此前的经验还能提高我们的学习效率。

雷锋网了解到,DeepMind 在美国国家科学院院刊(PNAS)上发表的论文就提出了一个解决“灾难性忘却”的有效方式,这一方法的灵感来自神经科学的研究成果,即人类和哺乳动物拥有巩固先前获得的技能和记忆的能力。 

神经科学家已经能区分大脑中两种类型的巩固方式:系统巩固(systems consolidation )与突触巩固(synaptic consolidation)。系统巩固的过程中,人类大脑将快速学习部分获得的记忆转印进了缓慢学习的部分。这一转印过程有有意识的回忆参与,也有无意识回忆的参与,人类做梦时就能完成这一转印过程。而在突触巩固中,如果一种技能在此前的学习中非常重要,神经元之间连接就不会被覆盖。DeepMind 的算法就是沾了突触巩固的光,成功解决了“灾难性忘却”的问题。

神经网络中神经元的连接与大脑非常相似,在学习完一个技巧后,DeepMind 会计算出在神经网络中的哪个连接对已学到的任务最为重要。随后在学习新技巧时,这些重要的连接就会被保护起来不被覆盖。这样一来,在计算成本没有显著升高的情况下,“左耳进,右耳出”的问题就解决了。

如果用数学术语来解释,可理解为在一个新任务中把每个连接所附加的保护比作弹簧,弹簧的强度与其连接的重要性成比例。因此,DeepMind 将这种算法称之为“弹性权重巩固”(Elastic Weight Consolidation,EWC)。

DeepMind 弹性权重巩固算法让 AI 拥有“记忆” ,将成机器高效学习的敲门砖

为了测试该算法,DeepMind 让程序不断尝试玩 Atari 游戏。据雷锋网了解,单单从得分来学习一个游戏是一项具有挑战性的任务,但是依次学习多个游戏则更加困难,因为每个游戏需要单独的战略。如下图所示,如果没有 EWC 算法,程序会在游戏停止后快速将之前的事忘得一干二净(蓝色),这就意味着其实程序什么游戏都没学会。不过,如果用上 EWC 算法(棕色和红色),程序就不那么容易遗忘,且可以逐个学会多个游戏。 

DeepMind 弹性权重巩固算法让 AI 拥有“记忆” ,将成机器高效学习的敲门砖 

眼下计算机程序还不能适应即时学习的节奏,不过 DeepMind 的新算法已经攻克了“灾难性忘却”这座大山。未来,这项研究结果可能是计算机程序通往灵活高效学习的敲门砖。

同时,这项研究也深化了 DeepMind 对“巩固”在人类大脑中产生过程的理解。事实上,该算法所基于的神经科学理论都是在非常简单的例子中得到证实的。通过将该理论应用在更现实和复杂的机器学习环境中,DeepMind 希望进一步加强对突触巩固在记忆保存中的作用及其机制的研究。

本文作者:大壮旅

本文转自雷锋网禁止二次转载,原文链接

相关文章
|
2月前
|
人工智能 自然语言处理 算法
阿里云 AI 搜索开放平台:从算法到业务——AI 搜索驱动企业智能化升级
本文介绍了阿里云 AI 搜索开放平台的技术的特点及其在各行业的应用。
338 3
|
2月前
|
机器学习/深度学习 人工智能 JSON
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
286 18
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
|
3月前
|
算法 数据可视化 开发者
为什么要学习数据结构与算法
今天,我向大家介绍一门非常重要的课程——《数据结构与算法》。这门课不仅是计算机学科的核心,更是每一位开发者从“小白”迈向“高手”的必经之路。
为什么要学习数据结构与算法
|
3月前
|
人工智能 算法 数据处理
算法为舟 思想为楫:AI时代,创作何为?
本文探讨了AI时代创作领域的变革与挑战,分析了人类创作者的独特价值,并展望了未来创作的新图景。随着生成式AI技术的发展,创作的传统认知被颠覆,评价体系面临革新。然而,人类创作者凭借批判性思维、情感智能、创意直觉和伦理自觉,依然具有不可替代的价值。文章呼吁创作者转变思维,从竞争走向合作,提升复合能力,关注作品的社会影响,并持续学习进化。在AI助力下,创作将更加民主化、多样化,推动文明进步。最终,人机协同或将成为未来创作的核心模式,共同开创文化发展的新纪元。
|
3月前
|
人工智能 Docker 容器
AI思维导图工具跨领域学习的好帮手
AI思维导图工具跨领域学习的好帮手
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
128 6
|
3月前
|
人工智能 编解码 算法
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
172 5
|
3月前
|
人工智能 监控 算法
Python下的毫秒级延迟RTSP|RTMP播放器技术探究和AI视觉算法对接
本文深入解析了基于Python实现的RTSP/RTMP播放器,探讨其代码结构、实现原理及优化策略。播放器通过大牛直播SDK提供的接口,支持低延迟播放,适用于实时监控、视频会议和智能分析等场景。文章详细介绍了播放控制、硬件解码、录像与截图功能,并分析了回调机制和UI设计。此外,还讨论了性能优化方法(如硬件加速、异步处理)和功能扩展(如音量调节、多格式支持)。针对AI视觉算法对接,文章提供了YUV/RGB数据处理示例,便于开发者在Python环境下进行算法集成。最终,播放器凭借低延迟、高兼容性和灵活扩展性,为实时交互场景提供了高效解决方案。
212 4
|
2月前
|
传感器 人工智能 自然语言处理
跨越机器物理世界和AI虚拟世界之间的鸿沟,是软硬件一体化创新关键 法思诺创新 法思诺创新​
法思诺创新专注于跨越机器物理世界与AI虚拟世界的鸿沟,推动软硬件一体化创新。在物理世界中,机器人虽有强壮躯体却缺乏灵活大脑;而在虚拟世界里,AI虽智慧无穷却无实体行动力。两者融合是未来智能化发展的关键。通过AI赋能,智能机器人已在智能制造、智慧物流、智慧服务及特种作业等领域大显身手。例如,AI工业机器人提升生产精度与效率,仓储机器人优化物流调度,服务机器人提供人性化交互,特种机器人执行危险任务。软硬件一体化创新实现了机器人感知、决策、运动和人机交互的全面智能化,是智能化时代的大势所趋。正如威廉·吉布森所言:“未来已来,只是尚未均匀分布。”率先拥抱软硬件一体化创新者,将赢得未来。
|
3月前
|
机器学习/深度学习 人工智能 算法
传统笔触与算法洪流:AI时代的艺术创作挑战
本文探讨了传统艺术与AI技术在创作中的共生关系及其对艺术生产力的赋能。研究表明,混合工作流能显著提升效率,而传统媒介带来的“意外美学”与AI生成的跨时空意象拼接相辅相成。AI通过快速生成视觉原型、优化色彩方案和提供即用元素,极大加速创作过程。同时,人机协同可实现风格融合、逆向思维训练及动态知识网络构建,但创作者需建立风格防火墙、验证机制和价值评估体系以守住创作主权。未来艺术教育将涵盖多层能力培养,具备跨维能力的艺术家市场竞争力将大幅提升。最终,真正成功的创作者是能够融合传统与科技、让艺术回归情感表达本质的“双脑创作者”。
185 0