GA-BP回归预测 | Matlab 遗传算法优化算法优化BP神经网络回归预测

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: GA-BP回归预测 | Matlab 遗传算法优化算法优化BP神经网络回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在机器学习和人工智能领域,BP神经网络一直是一种常用的回归预测模型。然而,由于网络结构复杂性和参数调整的困难性,BP神经网络的性能往往受到限制。为了克服这些限制,研究人员提出了许多优化算法来改进BP神经网络的性能。其中,遗传算法是一种常用的优化算法之一,可以有效地优化BP神经网络的权重和阈值。

遗传算法是一种基于生物进化原理的优化算法,通过模拟自然选择、交叉和变异等过程,搜索最优解。在优化BP神经网络中,遗传算法可以被用来优化网络的权重和阈值,以提高网络的性能和预测精度。

首先,我们需要定义适应度函数。在优化BP神经网络的过程中,适应度函数可以衡量网络的性能。通常情况下,我们可以使用均方误差(MSE)作为适应度函数,即将网络的预测值与实际值之间的差异平方化,并求其平均值。通过最小化适应度函数,我们可以找到最佳的网络权重和阈值,从而提高预测精度。

接下来,我们需要定义遗传算法的基本操作。遗传算法包括选择、交叉和变异等操作。选择操作根据适应度函数的值选择优秀的个体,使它们有更高的概率被选中作为父代。交叉操作通过交换父代的基因信息来产生新的个体。变异操作则是在新个体的基因信息中引入随机扰动,以增加搜索空间。

在优化BP神经网络中,遗传算法的应用可以分为两个阶段。首先,我们需要初始化种群,即随机生成一组初始个体。这些个体的权重和阈值将作为BP神经网络的初始值。然后,我们通过迭代的方式,不断更新和优化这些个体的权重和阈值。在每一次迭代中,我们根据适应度函数的值选择优秀的个体,并使用交叉和变异操作生成新的个体。经过多次迭代,我们可以找到最佳的个体,即具有最低适应度函数值的个体,其对应的权重和阈值将作为最终的BP神经网络模型。

通过遗传算法优化BP神经网络,我们可以有效地提高回归预测的精度和性能。遗传算法能够全局搜索网络的最优解,避免了局部最优解的陷阱。此外,遗传算法还可以自动调整网络的结构和参数,提高网络的鲁棒性和泛化能力。

总结起来,遗传算法是一种有效的优化算法,可以用于优化BP神经网络的回归预测。通过定义适应度函数和基本操作,并通过迭代的方式不断更新和优化个体,我们可以找到最佳的网络权重和阈值,提高预测精度和性能。遗传算法的应用可以使BP神经网络更加强大和可靠,为回归预测问题提供更好的解决方案。

📣 部分代码

function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)%该函数用来计算适应度值%x          input     个体%inputnum   input     输入层节点数%outputnum  input     隐含层节点数%net        input     网络%inputn     input     训练输入数据%outputn    input     训练输出数据%error      output    个体适应度值%提取w1=x(1:inputnum*hiddennum);B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);net=newff(inputn,outputn,hiddennum);%网络进化参数net.trainParam.epochs=20;net.trainParam.lr=0.01;net.trainParam.goal=0.00001;net.trainParam.show=100;net.trainParam.showWindow=0; %网络权值赋值net.iw{1,1}=reshape(w1,hiddennum,inputnum);net.lw{2,1}=reshape(w2,outputnum,hiddennum);net.b{1}=reshape(B1,hiddennum,1);net.b{2}=B2;%网络训练net=train(net,inputn,outputn);an=sim(net,inputn);error=sum(abs(an-outputn));

⛳️ 运行结果

🔗 参考文献

[1] 王德民.基于遗传算法优化BP神经网络的风电功率预测[J].电子设计工程, 2013, 21(22):4.DOI:10.3969/j.issn.1674-6236.2013.22.028.

[2] 王德民.基于遗传算法优化BP神经网络的风电功率预测[J].电子设计工程, 2013.DOI:CNKI:SUN:GWDZ.0.2013-22-030.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合





相关文章
|
3天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
14天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
20天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
2月前
|
算法
基于GA遗传优化的TSP问题最优路线规划matlab仿真
本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。
138 29
|
25天前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
2月前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
3月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。
|
3月前
|
算法
基于GA遗传优化的PID控制器最优控制参数整定matlab仿真
通过遗传算法优化PID控制器的Kp、Ki、Kd参数,以输出误差为目标值,迭代求得最优参数。采用MATLAB 2022a验证,利用遗传算法全局寻优特性,自动完成参数整定,适合复杂及非线性系统,有效提升控制性能。
下一篇
无影云桌面