VisionFM:通用眼科 AI 大模型,具备眼科疾病诊断能力,展现出专家级别的准确性

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: VisionFM 是一个多模态多任务的视觉基础模型,专为通用眼科人工智能设计。通过预训练大量眼科图像,模型能够处理多种眼科成像模态,并在多种眼科任务中展现出专家级别的智能性和准确性。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:VisionFM 能够筛查和诊断多种眼科疾病,并预测疾病的发展趋势。
  2. 技术:通过大规模预训练和多模态多任务学习,VisionFM 展现出强大的泛化能力。
  3. 应用:VisionFM 在眼科临床任务、基层医疗环境和教育培训中具有广泛的应用前景。

正文(附运行示例)

VisionFM 是什么

公众号: 蚝油菜花 - VisionFM

VisionFM(伏羲慧眼)是一个多模态多任务的视觉基础模型,专为通用眼科人工智能而设计。通过预训练 3.4 百万张来自 560,457 个个体的眼科图像,覆盖广泛的眼科疾病、成像模态、设备和人群统计数据。VisionFM 能处理包括眼底摄影、光学相干断层扫描(OCT)、荧光素眼底血管造影(FFA)等在内的八种常见眼科成像模态,应用于眼科疾病识别、疾病进展预测、疾病表型细分以及全身生物标志物和疾病预测等多种眼科 AI 任务。

VisionFM 在诊断 12 种常见眼科疾病方面超越了具有基础和中级水平的眼科医生,在大规模眼科疾病诊断基准数据库上超越了强大的基线深度神经网络。VisionFM 还表现出对新眼科模态、疾病谱系和成像设备的强泛化能力。

VisionFM 的主要功能

  • 疾病筛查和诊断:VisionFM 能够筛查和诊断多种眼科疾病,包括糖尿病视网膜病变、青光眼、老年性黄斑变性等。
  • 疾病预后:模型还能预测疾病的发展趋势和预后。
  • 疾病表型细分:VisionFM 可以进行疾病表型的亚分类,包括病变、血管和层的分割,以及地标检测。
  • 全身生物标志物和疾病预测:除了眼部疾病,VisionFM 还能从眼部图像中预测全身的生物标志物和疾病。
  • 多模态处理能力:VisionFM 能够处理包括眼底摄影、OCT、FFA 在内的八种常见眼科成像模态。
  • 模态无关的诊断:VisionFM 支持模态无关的诊断,即可以用单一解码器诊断不同成像模态中的多种眼科疾病。
  • 少样本学习:VisionFM 展现出少样本学习的能力,能够以高准确度诊断新疾病,即使只有少量的标注样本。
  • 强大的泛化能力:模型对新的眼科模态、疾病谱系和成像设备展现出强大的泛化能力。
  • 合成数据增强学习:VisionFM 还能利用合成的眼科成像数据来增强其表示学习能力,从而在下游眼科 AI 任务上取得显著的性能提升。

VisionFM 的技术原理

  • 大规模预训练:VisionFM 是一个基于深度学习的视觉基础模型,它通过预训练 3.4 百万张来自 560,457 个个体的眼科图像,覆盖广泛的眼科疾病、成像模态、成像设备和人口统计学数据。
  • 多模态多任务学习:VisionFM 能够处理多种眼科成像模态,包括眼底摄影、OCT、FFA 等,并应用于疾病筛查、诊断、疾病预后、疾病表型细分等多种眼科 AI 任务。
  • 专家级智能和准确性:预训练后的 VisionFM 在多个眼科 AI 应用中展现出专家级别的智能性和准确性,其全科智能在联合诊断 12 种常见眼科疾病方面超越了初级和中级眼科医生。

如何运行 VisionFM

1. 安装环境

首先,使用 Conda 创建并激活环境:

conda create -n vfm python=3.8
conda activate vfm

安装依赖项:

git clone https://github.com/ABILab-CUHK/VisionFM.git
cd VisionFM
pip install -r requirements.txt

2. 预训练

2.1. 准备预训练数据集

在研究中,我们使用了 8 种模态:Fundus, OCT, External Eye, UBM, B-Ultrasound, MRI, Silt Lamp, and FFA。每种模态的数据路径应包含所有图像,例如:

.
├── /dst_dir/Fundus/
│   ├── 1.jpg
│   ├── 2.png
│   └── ....
├── /dst_dir/OCT/
│   ├── 1.png
│   ├── 2.jpg
│   └── ...
└── ...

如果没有眼底摄影图像,可以使用以下命令生成随机图像:

cd evaluation
python random_data.py --task pretrain --dst_dir ../dataset/pretrain_random

2.2. 预训练 VisionFM 编码器

训练 vit-base 编码器:

CUDA_VISIBLE_DEVICES=0,1,2,3 nohup python3 -m torch.distributed.launch --nnodes 1 --node_rank 0 --nproc_per_node=4 --master_addr=127.0.0.1 --master_port=29500 main_pretrain.py \
--local-rank=0 \
--data_path ./dataset/pretrain_random \
--modality Fundus \ 
--norm_last_layer true \
--epochs 400 \
--batch_size_per_gpu 12 \
--shared_head true \
--out_dim 8192 \
--output_dir ./results \
--global_crops_scale 0.32 1.0 \
--pred_ratio 0 0.3 \
--pred_ratio_var 0 0.2 \
--name Train_Random_Fundus \
--load_pretrain > train_fundus.log 2>&1 &

3. 训练解码器

3.1. 下载预训练权重

根据需要研究的模态下载相应的模型权重:

Modality Google Drive
Fundus https://drive.google.com/file/d/13uWm0a02dCWyARUcrCdHZIcEgRfBmVA4/view?usp=sharing
OCT https://drive.google.com/file/d/1o6E-ine2QLx2pxap-c77u-SU0FjxwypA/view?usp=sharing
FFA https://drive.google.com/file/d/128izBUNV00Ojb9w9Dq3GhBvhWqzU-mla/view?usp=sharing
Ultrasound https://drive.google.com/file/d/1IlD0snowxdEVvxmiIBZGR0D9uOcrCT2D/view?usp=sharing
External Eye https://drive.google.com/file/d/16zGHTD4ZcGAYW382kKHBw3TU6D1OtvTD/view?usp=sharing
Silt Lamp https://drive.google.com/file/d/1pemWDkGoZYlqLQ6ooFINktyk8xnv9wY_/view?usp=sharing
MRI https://drive.google.com/file/d/1fcfylnOWhfnZHBAKT9pQPufyS5ZYCXu0/view?usp=sharing
UBM https://drive.google.com/file/d/1q2fVOgFBnWNu1BsXaza1A-OIcCiifNUQ/view?usp=sharing

3.2. 训练分类解码器

训练分类解码器的命令如下:

CUDA_VISIBLE_DEVICES=0 nohup python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=29501 evaluation/train_cls_decoder.py \
--name single_cls_debug \
--pretrained_weights ./pretrain_weights/VFM_Fundus_weights.pth \
--output_dir ./results \
--data_path ./dataset/single_cls_random/FundusClassification/ \
--num_labels 5 \
--batch_size_per_gpu 32 > train_single_cls.log 2>&1 &

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
5天前
|
调度 云计算 芯片
云超算技术跃进,阿里云牵头制定我国首个云超算国家标准
近日,由阿里云联合中国电子技术标准化研究院主导制定的首个云超算国家标准已完成报批,不久后将正式批准发布。标准规定了云超算服务涉及的云计算基础资源、资源管理、运行和调度等方面的技术要求,为云超算服务产品的设计、实现、应用和选型提供指导,为云超算在HPC应用和用户的大范围采用奠定了基础。
179567 18
|
12天前
|
存储 运维 安全
云上金融量化策略回测方案与最佳实践
2024年11月29日,阿里云在上海举办金融量化策略回测Workshop,汇聚多位行业专家,围绕量化投资的最佳实践、数据隐私安全、量化策略回测方案等议题进行深入探讨。活动特别设计了动手实践环节,帮助参会者亲身体验阿里云产品功能,涵盖EHPC量化回测和Argo Workflows量化回测两大主题,旨在提升量化投研效率与安全性。
云上金融量化策略回测方案与最佳实践
|
14天前
|
人工智能 自然语言处理 前端开发
从0开始打造一款APP:前端+搭建本机服务,定制暖冬卫衣先到先得
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。
9189 23
|
18天前
|
Cloud Native Apache 流计算
资料合集|Flink Forward Asia 2024 上海站
Apache Flink 年度技术盛会聚焦“回顾过去,展望未来”,涵盖流式湖仓、流批一体、Data+AI 等八大核心议题,近百家厂商参与,深入探讨前沿技术发展。小松鼠为大家整理了 FFA 2024 演讲 PPT ,可在线阅读和下载。
4883 12
资料合集|Flink Forward Asia 2024 上海站
|
18天前
|
自然语言处理 数据可视化 API
Qwen系列模型+GraphRAG/LightRAG/Kotaemon从0开始构建中医方剂大模型知识图谱问答
本文详细记录了作者在短时间内尝试构建中医药知识图谱的过程,涵盖了GraphRAG、LightRAG和Kotaemon三种图RAG架构的对比与应用。通过实际操作,作者不仅展示了如何利用这些工具构建知识图谱,还指出了每种工具的优势和局限性。尽管初步构建的知识图谱在数据处理、实体识别和关系抽取等方面存在不足,但为后续的优化和改进提供了宝贵的经验和方向。此外,文章强调了知识图谱构建不仅仅是技术问题,还需要深入整合领域知识和满足用户需求,体现了跨学科合作的重要性。
|
26天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
14天前
|
人工智能 容器
三句话开发一个刮刮乐小游戏!暖ta一整个冬天!
本文介绍了如何利用千问开发一款情侣刮刮乐小游戏,通过三步简单指令实现从单个功能到整体框架,再到多端优化的过程,旨在为生活增添乐趣,促进情感交流。在线体验地址已提供,鼓励读者动手尝试,探索编程与AI结合的无限可能。
三句话开发一个刮刮乐小游戏!暖ta一整个冬天!
|
13天前
|
消息中间件 人工智能 运维
12月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
1023 67

热门文章

最新文章