基于百炼平台qwen-max的api 打造一套 检索增强 图谱增强 基于指令的智能工具调用决策 智能体

简介: 基于百炼平台的 `qwen-max` API,设计了一套融合检索增强、图谱增强及指令驱动的智能工具调用决策系统。该系统通过解析用户指令,智能选择调用检索、图谱推理或模型生成等工具,以提高问题回答的准确性和丰富性。系统设计包括指令解析、工具调用决策、检索增强、图谱增强等模块,旨在通过多种技术手段综合提升智能体的能力。

基于百炼平台的 qwen-max API 打造一套 检索增强、图谱增强、基于指令的智能工具调用决策的智能体,可以按照以下步骤进行设计与实现。这一系统将使用智能体根据指令选择适当的工具来增强模型的能力,结合检索模块、图谱推理模块,并通过指令来自动决策调用这些模块。

系统设计

  1. 指令输入与解析
    用户输入指令,系统解析指令并确定需要调用的工具(如检索、图谱推理、代码生成等)。

  2. 工具调用决策
    根据解析出的任务,决定是调用检索增强、图谱增强还是其他工具。

  3. 检索增强
    使用外部文档库、知识库等数据源,结合检索增强技术(如基于语义的检索)来获取相关资料。

  4. 图谱增强
    通过知识图谱(例如 Neo4j 图数据库)查询实体间的关系,结合图谱推理来加强回答的准确性。

  5. 基于指令的智能工具调用决策
    使用规则引擎或任务规划模块,根据不同的指令调用不同的工具,并做出决策。

1. 集成 qwen-max API

首先,确保能通过 qwen-max API 来处理自然语言并生成相关响应。

import os
from openai import OpenAI

client = OpenAI(
    # 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
    api_key=os.getenv("DASHSCOPE_API_KEY"), 
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
    model="qwen-plus", # 模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
    messages=[
        {
   'role': 'system', 'content': 'You are a helpful assistant.'},
        {
   'role': 'user', 'content': '你是谁?'}],
    )

print(completion.model_dump_json())

2. 检索增强模块

利用语义检索技术(如 FAISS 或 Elasticsearch)来增强系统的检索能力。以下是基于 faissSentence-BERT 的检索增强实现:

from sentence_transformers import SentenceTransformer
import faiss
import numpy as np

# 初始化 Sentence-BERT 模型
embedder = SentenceTransformer('paraphrase-MiniLM-L6-v2')

# 构建简单的 FAISS 索引
documents = [
    "Paris is the capital of France.",
    "London is the capital of England.",
    "Berlin is the capital of Germany."
]

document_embeddings = embedder.encode(documents)
index = faiss.IndexFlatL2(document_embeddings.shape[1])
index.add(np.array(document_embeddings))

def search_enhanced(query, k=3):
    query_embedding = embedder.encode([query])
    D, I = index.search(np.array(query_embedding), k)
    return [(documents[i], D[0][idx]) for idx, i in enumerate(I[0])]

3. 图谱增强模块

通过 Neo4j 或类似的图数据库来增强模型的推理能力,从图谱中提取结构化的信息来提升回答的准确性。

from py2neo import Graph

# 连接 Neo4j 图数据库
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))

def graph_enhanced(entity):
    query = f"""
    MATCH (e)-[:RELATED_TO]->(related) 
    WHERE e.name = '{entity}' 
    RETURN related.name
    """
    result = graph.run(query)
    return [record["related.name"] for record in result]

4. 指令解析与智能工具调用决策

系统根据输入指令决定调用哪一个工具。指令包括任务类型(如检索、图谱推理、模型生成等)和参数。

class SmartAgent:
    def __init__(self):
        self.tools = {
   
            "search": search_enhanced,
            "graph": graph_enhanced,
            "model": get_qwen_max_response
        }

    def parse_command(self, command):
        # 判断指令类型并解析
        if command.startswith("search:"):
            return "search", command[len("search:"):].strip()
        elif command.startswith("graph:"):
            return "graph", command[len("graph:"):].strip()
        elif command.startswith("model:"):
            return "model", command[len("model:"):].strip()
        else:
            return None, "Invalid command"

    def execute_command(self, command):
        task, param = self.parse_command(command)
        if task and task in self.tools:
            tool_function = self.tools[task]
            if task == "model":
                return tool_function(param)
            return tool_function(param)
        else:
            return "Error: Invalid or unsupported command."

5. 整合与响应生成

系统集成了检索增强、图谱增强和模型生成能力,根据指令选择适当的工具并输出最终结果。

def main():
    agent = SmartAgent()

    # 用户输入的指令
    user_commands = [
        "search:What is the capital of France?",
        "graph:Germany",
        "model:What are the benefits of AI?"
    ]

    for command in user_commands:
        print(f"Command: {command}")
        result = agent.execute_command(command)
        print(f"Result: {result}\n")

if __name__ == "__main__":
    main()

6. 测试输出

在此实现中,用户可以输入不同类型的指令,系统会根据指令类型调用不同的工具,并返回相应的结果。

示例指令与输出:

  1. 检索增强

    • 指令:search:What is the capital of France?
    • 结果:系统使用 FAISS 或其他检索引擎,返回相关文档或内容。
  2. 图谱增强

    • 指令:graph:Germany
    • 结果:系统查询知识图谱,返回与德国相关的其他实体或信息。
  3. 模型生成

    • 指令:model:What are the benefits of AI?
    • 结果:系统调用 qwen-max API 生成回答。

7. 扩展与优化

  • 指令格式化:可以设计更加细化和多样的指令格式,例如支持更复杂的查询条件。
  • 多工具联合决策:智能体可以在处理指令时,根据需要调用多个工具并将其结果合并,以得到更加完整的回答。
  • 性能优化:对于检索和图谱查询,可以优化数据存储和查询速度,例如通过分布式图数据库或高级向量检索优化性能。
  • 灵活的工具组合:可以根据任务的复杂度、时间要求等动态调整工具调用的策略。

总结

这个系统通过指令解析、智能决策和多个增强模块(检索、图谱、模型生成)相结合,创建了一个强大的智能体。它能够根据不同的指令选择合适的工具,增强对自然语言问题的回答能力,并根据不同数据源和推理方式提供更精确、更丰富的答案。

相关文章
|
7月前
|
安全 API 开发者
智能体-Agent能力升级!新增Assistant API & Tools API服务接口
ModelScope-Agent是一个交互式创作空间,它支持LLM(Language Model)的扩展能力,例如工具调用(function calling)和知识检索(knowledge retrieval)。它已经对相关接口进行了开源,以提供更原子化的应用LLM能力。用户可以通过Modelscope-Agent上的不同代理(agent),结合自定义的LLM配置和消息,调用这些能力。
|
24天前
|
JSON API 数据格式
淘宝 / 天猫官方商品 / 订单订单 API 接口丨商品上传接口对接步骤
要对接淘宝/天猫官方商品或订单API,需先注册淘宝开放平台账号,创建应用获取App Key和App Secret。之后,详细阅读API文档,了解接口功能及权限要求,编写认证、构建请求、发送请求和处理响应的代码。最后,在沙箱环境中测试与调试,确保API调用的正确性和稳定性。
|
1月前
|
供应链 数据挖掘 API
电商API接口介绍——sku接口概述
商品SKU(Stock Keeping Unit)接口是电商API接口中的一种,专门用于获取商品的SKU信息。SKU是库存量单位,用于区分同一商品的不同规格、颜色、尺寸等属性。通过商品SKU接口,开发者可以获取商品的SKU列表、SKU属性、库存数量等详细信息。
|
1月前
|
JSON API 数据格式
店铺所有商品列表接口json数据格式示例(API接口)
当然,以下是一个示例的JSON数据格式,用于表示一个店铺所有商品列表的API接口响应
|
2月前
|
编解码 监控 API
直播源怎么调用api接口
调用直播源的API接口涉及开通服务、添加域名、获取API密钥、调用API接口、生成推流和拉流地址、配置直播源、开始直播、监控管理及停止直播等步骤。不同云服务平台的具体操作略有差异,但整体流程简单易懂。
|
27天前
|
JSON API 数据安全/隐私保护
拍立淘按图搜索API接口返回数据的JSON格式示例
拍立淘按图搜索API接口允许用户通过上传图片来搜索相似的商品,该接口返回的通常是一个JSON格式的响应,其中包含了与上传图片相似的商品信息。以下是一个基于淘宝平台的拍立淘按图搜索API接口返回数据的JSON格式示例,同时提供对其关键字段的解释
|
2月前
|
人工智能 自然语言处理 PyTorch
Text2Video Huggingface Pipeline 文生视频接口和文生视频论文API
文生视频是AI领域热点,很多文生视频的大模型都是基于 Huggingface的 diffusers的text to video的pipeline来开发。国内外也有非常多的优秀产品如Runway AI、Pika AI 、可灵King AI、通义千问、智谱的文生视频模型等等。为了方便调用,这篇博客也尝试了使用 PyPI的text2video的python库的Wrapper类进行调用,下面会给大家介绍一下Huggingface Text to Video Pipeline的调用方式以及使用通用的text2video的python库调用方式。
|
2月前
|
JSON JavaScript API
(API接口系列)商品详情数据封装接口json数据格式分析
在成长的路上,我们都是同行者。这篇关于商品详情API接口的文章,希望能帮助到您。期待与您继续分享更多API接口的知识,请记得关注Anzexi58哦!
|
1月前
|
JSON 前端开发 JavaScript
API接口商品详情接口数据解析
商品详情接口通常用于提供特定商品的详细信息,这些信息比商品列表接口中的信息更加详细和全面。以下是一个示例的JSON数据格式,用于表示一个商品详情API接口的响应。这个示例假定API返回一个包含商品详细信息的对象。
|
2月前
|
JSON API 开发者
1688API商品详情接口如何获取
获取 1688 API 商品详情接口的步骤包括:1. 注册开发者账号;2. 了解接口规范和政策;3. 申请 API 权限;4. 获取 API 密钥;5. 实现接口调用(选择开发语言、发送 HTTP 请求);6. 处理响应数据。通过这些步骤,可以顺利调用 1688 的商品详情 API。

相关产品

  • 大模型服务平台百炼