基于离散差分法的复杂微分方程组求解matlab数值仿真

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 本程序基于离散差分法求解复杂微分方程组,将连续微分方程转化为差分方程,采用一阶显式时间格式和一阶偏心空间格式。在MATLAB2022a上测试通过,展示了运行结果。

1.程序功能描述
基于离散差分法的复杂微分方程组求解.“连续微分方程”到“离散微分方程”到“差分方程”,离散微分方程,变成差分方程。建立差分方程时,时间采用一阶显格式,空间采用一阶偏心差分格式。

2add780120832ffbda005ec9adeaa437_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg
8.jpeg
9.jpeg
10.jpeg
11.jpeg

3.核心程序

```% ʼ
L = 0.05; % ռ䳤
time = 1e-8; %ʱ 䳤
Nz = 10; % ռ
Nt = 10; %ʱ
dt = time/Nt;%t΢ ֵ ۼ
dz = L/Nz;%z΢ ֵ ۼ

N1 = zeros(Nz,Nt);
N2 = zeros(Nz,Nt);
N3 = zeros(Nz,Nt);
N4 = zeros(Nz,Nt);
N1_Yb = zeros(Nz,Nt);
N2_Yb = zeros(Nz,Nt);
Ps = zeros(Nz,Nt);

PASE_plus = zeros(M,Nz,Nt);
PASE_minus = zeros(M,Nz,Nt);
Pp_plus = zeros(Nz,Nt);
Pp_minus = zeros(Nz,Nt);

G = zeros(Nz,Nt);
NF = zeros(Nz,Nt);

% 1 ʽ 1 ϵ IJ ʾ
W11 = FpO13_vp/(AchVp);
W12 = Fs
O12_vs/(AchVs);
for i = 1:M
W13(i) = F_ASE_vj(i) O12_vj(i) / (Ach*Vj(i));
end

W14 = FsO21_vs/(AchVs);
for i = 1:M
W15(i) = F_ASE_vj(i)
O21_vj(i) / (AchVj(i));
end

W16 = FpO31_vp/(Ach*Vp);

% 1 ʽ 2 ϵ IJ ʾ
W21 = FsO12_vs/(Ach*Vs);

for i = 1:M
W22(i) = F_ASE_vj(i) O12_vj(i) / (AchVj(i));
end
W23 = Fs
O21_vs/(AchVs);

for i = 1:M
W24(i) = F_ASE_vj(i) O21_vj(i) / (Ach*Vj(i));
end

% 1 ʽ 3 ϵ IJ ʾ
W31 = FpO13_vp/(AchVp);
W32 = Fp
O31_vp/(AchVp);

% 1 ʽ 4 ϵ IJ ʾ
W41 = FpO12Yb_vp/(AchVp);
W42 = Fp
O21Yb_vp/(AchVp);
Ps(1,:) = 0.001ones(1,Nt);
Pp_plus(1,:) = 0.06
ones(1,Nt);
Pp_minus(1,:) = 0.04*ones(1,Nt);

for j = 1:Nt-1
for i = 1:Nz-1
% 1ʽ 1
N1(i,j+1) = N1(i,j) + ...
dt( -1(W11(Pp_plus(i,j) + Pp_minus(i,j)) + W12Ps(i,j) + sum(W13.(PASE_plus(:,i,j)+PASE_minus(:,i,j))'))N1(i,j) +...
(A21 + W14Ps(i,j) + sum(W15.(PASE_plus(:,i,j)+PASE_minus(:,i,j))'))N2(i,j) + ...
C2
N2(i,j)^2 + W16(Pp_plus(i,j) + Pp_minus(i,j))N3(i,j) + C3N3(i,j)^2 - C14N1(i,j)N4(i,j)+...
-1
KtrN2_Yb(i,j)N1(i,j)+KbaN1_Yb(i,j)N3(i,j) );

    %      1ʽ  2
    N2(i,j+1) = N2(i,j) + ...   
                dt*( (W21*Ps(i,j)+sum(W22.*(PASE_plus(:,i,j)+PASE_minus(:,i,j))'))*N1(i,j) +...
                  -1*(A21 + W23*Ps(i,j) + sum( W24.*(PASE_plus(:,i,j)+PASE_minus(:,i,j))' ))*N2(i,j) +...
                      A32*N3(i,j) - 2*C2*N2(i,j)^2 + 2*C14*N1(i,j)*N4(i,j) );

    %      1ʽ  3
    N3(i,j+1) = N3(i,j) + ...    
                dt*( W31*(Pp_plus(i,j) + Pp_minus(i,j))*N1(i,j) - A32*N3(i,j) - W32*(Pp_plus(i,j) + Pp_minus(i,j))*N3(i,j) -...
                     2*C3*N3(i,j)^2 + A43*N4(i,j) + Ktr*N2_Yb(i,j)*N1(i,j) - Kba*N1_Yb(i,j)*N3(i,j) );

    %      1ʽ  4
    N1_Yb(i,j+1) = N1_Yb(i,j) + ...
                   dt*(-1*W41*(Pp_plus(i,j) + Pp_minus(i,j))*N1_Yb(i,j) + W42*(Pp_plus(i,j) + Pp_minus(i,j))*N2_Yb(i,j) +...
                          A21Yb*N2_Yb(i,j) + Ktr*N2_Yb(i,j)*N1(i,j) - Kba*N1_Yb(i,j)*N3(i,j));

    %      1ʽ  5
    N4(i,j+1) = NEr - (N1(i,j+1) + N2(i,j+1) + N3(i,j+1)); 

    %      1ʽ  6
    N2_Yb(i,j+1) = NYb - N1_Yb(i,j+1);

    if N1(i,j+1) > NEr,N1(i,j+1) = NEr;end
    if N2(i,j+1) > NEr,N2(i,j+1) = NEr;end    
    if N3(i,j+1) > NEr,N3(i,j+1) = NEr;end    
    if N4(i,j+1) > NEr,N4(i,j+1) = NEr;end    
    if N1_Yb(i,j+1) > NYb,N1_Yb(i,j+1) = NYb;end
    if N2_Yb(i,j+1) > NYb,N2_Yb(i,j+1) = NYb;end          

    if N1(i,j+1) < 0,N1(i,j+1) = 0;end
    if N2(i,j+1) < 0,N2(i,j+1) = 0;end    
    if N3(i,j+1) < 0,N3(i,j+1) = 0;end    
    if N4(i,j+1) < 0,N4(i,j+1) = 0;end    
    if N1_Yb(i,j+1) < 0,N1_Yb(i,j+1) = 0;end
    if N2_Yb(i,j+1) < 0,N2_Yb(i,j+1) = 0;end             


    %     Ϸ  ̼   õ   N1  N2  N3  N4  N1Yb  N2Yb    
    %      2
    Pp_plus(i+1,j)   =  Pp_plus(i,j)  + dz*(-Fp*(O13_vp*N1(i,j) - O31_vp*N3(i,j) + O12Yb_vp*N1_Yb(i,j) - O21Yb_vp*N2_Yb(i,j))*Pp_plus(i,j)  - ap*Pp_plus(i,j));

    Pp_minus(i+1,j)  =  Pp_minus(i,j) + dz*(Fp*(O13_vp*N1(i,j) - O31_vp*N3(i,j) + O12Yb_vp*N1_Yb(i,j) - O21Yb_vp*N2_Yb(i,j))*Pp_minus(i,j) + ap*Pp_plus(i,j));

    Ps(i+1,j)        =  Ps(i,j)     + dz*(Fs*( O21_vs*N2(i,j) - O12_vs*N1(i,j) )*Ps(i,j) - as*Ps(i,j)); 

    for ii = 1:M
        PASE_plus(ii,i+1,j)  =    PASE_plus(ii,i,j)+dz*(F_ASE_vj(ii)*( O21_vj(ii)*N2(i,j) - O12_vj(ii)*N1(i,j) ) * PASE_plus(ii,i,j) +...
                                  2*h*Vj(ii)*DVj(ii)*F_ASE_vj(ii)*O21_vj(ii)*N2(i,j)-as*PASE_plus(ii,i,j));

        PASE_minus(ii,i+1,j) =   PASE_minus(ii,i,j)+dz*(-1*F_ASE_vj(ii)*( O21_vj(ii)*N2(i,j) - O12_vj(ii)*N1(i,j) ) * PASE_minus(ii,i,j) -...
                                 2*h*Vj(ii)*DVj(ii)*F_ASE_vj(ii)*O21_vj(ii)*N2(i,j)+as*PASE_minus(ii,i,j));            
    end

    if Pp_plus(i+1,j)    < 0,Pp_plus(i+1,j)     = 0;end
    if Pp_minus(i+1,j)   < 0,Pp_minus(i+1,j)    = 0;end
    if Ps(i+1,j)         < 0,Ps(i+1,j)          = 0;end        

    %ͨ    ̬    õ Pp+  Pp-  Pase+  Pase-  Ps

end

end

for z = 1:Nz
for t = 1:Nt
PASE_plus2(z,t) = sum(PASE_plus(:,z,t));
PASE_minus2(z,t) = sum(PASE_minus(:,z,t));
end
end

for z = 1:Nz
for t = 1:Nt
G(z,t) = 10*log10(Ps(z,t)/Ps(1,1));
end
end

for z = 1:Nz
for t = 1:Nt
NF(z,t) = 10log10(1/G(z,t) + PASE_plus2(z,t)/(G(z,t)Vs*DVs) );
end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Pp_plus2 = interp1(dz:dz:L,Pp_plus(1:end,Nz),0:dz/10:L,'cubic');
Pp_minus2 = interp1(dz:dz:L,Pp_minus(1:end,Nz),0:dz/10:L,'cubic');

figure;
subplot(211);
plot(0:dz/10:L,Pp_plus2,'g-','LineWidth',3);
xlabel('z');
ylabel('Pp+(Z)');
title('Pp+(Z)&z');
grid on;
subplot(212);
plot(L:-dz/10:0,Pp_minus2,'m--','LineWidth',2);
xlabel('z');
ylabel('Pp-(Z)');
title('Pp-(Z)&z');
grid on;
16_015m

```

4.本算法原理
本课题求解的方程组表达式如下:

3052700e05dd5116e2ff68c0f4d29328_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

7d6e3b2a5b4ad6fcb54f073dae54eca9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

基于离散差分法的复杂微分方程组求解.“连续微分方程”到“离散微分方程”到“差分方程”,离散微分方程,变成差分方程。建立差分方程时,时间采用一阶显格式,空间采用一阶偏心差分格式。
相关文章
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
50 31
|
4天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
3天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
14天前
|
算法
超市火灾烟雾蔓延及人员疏散的matlab模拟仿真,带GUI界面
本项目基于MATLAB2022A开发,模拟了大型商业建筑中火灾发生后的人员疏散与烟雾扩散情况。算法通过设定引导点指导人员疏散,考虑视野范围、随机运动及多细胞竞争同一格点的情况。人员疏散时,根据是否处于烟雾区调整运动策略和速度,初始疏散采用正态分布启动。烟雾扩散模型基于流体方程,考虑了无风环境下的简化。
|
11天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
11天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
16天前
|
存储 算法 数据安全/隐私保护
基于方块编码的图像压缩matlab仿真,带GUI界面
本项目展示了基于方块编码的图像压缩算法,包括算法运行效果、软件环境(Matlab 2022a)、核心程序及理论概述。算法通过将图像划分为固定大小的方块并进行量化、编码,实现高效压缩,适用于存储和传输大体积图像数据。
|
16天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
14天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。