LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作

简介: 【10月更文挑战第16天】最新研究显示,大型语言模型(LLMs)在数学问题解决上取得显著进展。谷歌、DeepMind等机构的研究人员通过引入元认知知识,使LLMs能更好地理解和解决数学问题,其在GSM8K和MATH数据集上的准确率分别提升了11.6%和7.52%。这一成果不仅为AI领域开辟了新路径,也为数学教育带来了新的可能性。

在人工智能领域,大型语言模型(LLMs)的快速发展正引发一场深刻的变革。最近,来自谷歌、DeepMind等四大机构的研究人员联合发表了一篇论文,展示了LLMs在数学问题解决方面的显著进步。

LLMs是一类基于深度学习的模型,能够处理和生成自然语言。近年来,LLMs在各种自然语言处理任务中表现出色,包括机器翻译、文本生成和问答系统等。然而,在数学问题解决方面,LLMs的表现一直不尽如人意。

为了解决这个问题,研究人员提出了一种基于元认知知识的LLM改进方法。元认知知识是指个体对自己思维和推理过程的直观认识。研究人员希望通过赋予LLMs元认知知识,提高它们在数学问题解决方面的能力。

研究人员首先开发了一种提示引导的交互程序,用于获取LLMs的元认知知识。他们使用这个程序让LLMs为数学问题分配合理的技能标签,并进行语义聚类以获得更粗略的技能标签家族。这些粗略的技能标签对人类来说是可解释的。

为了验证这些技能标签是否对LLMs的推理过程有意义和相关性,研究人员进行了以下实验:

  1. 他们让GPT-4(一种强大的LLM)为数学数据集GSM8K和MATH中的训练问题分配技能标签。
  2. 在使用LLM解决测试问题时,他们向LLM展示了完整的技能标签列表,并要求它识别所需的技能。然后,他们向LLM展示了与该技能标签相关联的随机选择的已解决问题示例。

这些实验的结果显示,使用这种基于元认知知识的方法,LLMs在GSM8K和MATH数据集上的准确性得到了显著提高。

研究人员发现,通过赋予LLMs元认知知识,并使用基于技能的示例进行引导,LLMs在数学问题解决方面的性能得到了显著提高。具体来说,他们发现使用这种方法,LLMs在GSM8K和MATH数据集上的准确性分别提高了11.6%和7.52%。

这些结果令人印象深刻,表明LLMs在数学问题解决方面具有巨大的潜力。通过进一步的研究和改进,我们可以期待LLMs在解决更复杂的数学问题方面取得更好的成绩。

这项研究对人工智能领域具有重要意义。首先,它展示了LLMs在数学问题解决方面的潜力,为未来的研究提供了新的思路。其次,它提出了一种基于元认知知识的LLM改进方法,为提高LLMs的性能提供了一种新的途径。

此外,这项研究还对教育领域具有启示意义。通过将LLMs应用于数学教育,我们可以为学生提供更高效、更个性化的学习体验。LLMs可以帮助学生识别和理解数学问题中的技能和概念,并提供相应的示例和解释,以帮助他们更好地掌握这些知识。

尽管这项研究取得了令人印象深刻的结果,但它也存在一些局限性。首先,研究人员主要关注的是数学问题解决,而没有考虑其他领域的问题。因此,我们需要进一步的研究来确定这种方法是否适用于其他领域。

其次,研究人员使用的是GPT-4等强大的LLM,而没有考虑其他更弱的LLM。因此,我们需要进一步的研究来确定这种方法是否适用于其他更弱的LLM。

最后,研究人员使用的是特定的数据集和实验设置,而没有考虑其他可能的影响因素。因此,我们需要进一步的研究来确定这种方法在不同的数据集和实验设置下是否仍然有效。

论文地址:https://arxiv.org/pdf/2405.12205

目录
相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
LLM超越人类时该如何对齐?谷歌用新RLHF框架解决了这个问题
谷歌提出了一种名为Evolving Alignment via Asymmetric Self-Play(eva)的新RLHF框架,通过创造者和解决者交替优化,生成具有挑战性的提示,提高模型泛化能力、样本效率和对齐鲁棒性。实验结果显示,eva在多个基准上显著提升性能,展示了其创新性和有效性。然而,eva的实现较为复杂,且实际应用中的长期效果仍待验证。
13 5
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第17天】近日,谷歌、DeepMind等四大机构联合发布论文,展示大型语言模型(LLMs)在数学问题解决上的显著进步。通过引入元认知知识,研究人员开发了提示引导的交互程序,使LLMs能为数学问题分配合理技能标签并进行语义聚类。实验结果显示,GPT-4在GSM8K和MATH数据集上的准确性分别提升了11.6%和7.52%,展现出巨大潜力。这一成果不仅为AI领域提供了新思路,也为数学教育带来了启示。
43 4
|
14天前
|
人工智能 数据挖掘
AI长脑子了?LLM惊现人类脑叶结构并有数学代码分区,MIT大牛新作震惊学界!
麻省理工学院的一项新研究揭示了大型语言模型(LLM)内部概念空间的几何结构,与人脑类似。研究通过分析稀疏自编码器生成的高维向量,发现了概念空间在原子、大脑和星系三个层次上的独特结构,为理解LLM的内部机制提供了新视角。论文地址:https://arxiv.org/abs/2410.19750
57 12
|
26天前
|
自然语言处理 算法
RAG真能提升LLM推理能力?人大最新研究:数据有噪声,RAG性能不升反降
随着大型语言模型(LLM)在自然语言处理领域的广泛应用,检索增强生成(RAG)技术因能引入新知识和减少幻觉而受到关注。然而,RAG对LLM推理能力的实际提升效果仍存争议。中国人民大学的一项研究表明,RAG虽能辅助LLM推理,但在处理含噪信息和深度推理时面临挑战。为此,研究团队提出了DPrompt tuning方法,旨在解决噪声问题并提升RAG性能。
48 12
|
26天前
|
人工智能 自然语言处理
大模型在装傻!谷歌苹果最新发现:LLM知道但不告诉你,掌握知识比表现出来的多
在AI领域,大模型(LLM)展现出了惊人的进步,但在谷歌和苹果的最新研究中,发现这些模型有时会故意“装傻”,即使已知正确答案也不告知用户。这种“隐藏智慧”现象揭示了大模型可能具备超出表面表现的深层能力,对AI评估与应用提出了新挑战,同时也带来了设计更高效模型的新机遇。论文链接:https://arxiv.org/pdf/2410.02707
38 11
|
1月前
|
自然语言处理 开发者
多模态大模型LLM、MLLM性能评估方法
针对多模态大模型(LLM)和多语言大模型(MLLM)的性能评估,本文介绍了多种关键方法和标准,包括模态融合率(MIR)、多模态大语言模型综合评估基准(MME)、CheckList评估方法、多模态增益(MG)和多模态泄露(ML),以及LLaVA Bench。这些方法为评估模型的多模态和多语言能力提供了全面的框架,有助于研究者和开发者优化和改进模型。
119 5
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
大模型强崩溃!Meta新作:合成数据有剧毒,1%即成LLM杀手
在人工智能领域,大型语言模型(LLMs)的快速发展令人瞩目,但递归生成数据可能导致“模型崩溃”。Meta的研究揭示,模型在训练过程中会逐渐遗忘低概率事件,导致数据分布偏差。即使少量合成数据(如1%)也会显著影响模型性能,最终导致崩溃。研究强调保留原始数据的重要性,并提出社区合作和技术手段来区分合成数据和真实数据。论文地址:https://www.nature.com/articles/s41586-024-07566-y
80 2
|
1月前
|
机器学习/深度学习 自然语言处理
完全使用自生成数据实现LLM自我纠正,DeepMind新突破SCoRe:纠正性能提升15.9%
【10月更文挑战第27天】Google DeepMind 研究人员开发了 SCoRe 方法,利用多回合在线强化学习显著提升大型语言模型(LLM)的自我纠正能力。该方法分为两个阶段:第一阶段通过强化学习减少行为崩溃,第二阶段使用奖励塑造优化两次尝试的性能。实验结果显示,SCoRe 在数学和编程任务上分别提升了 4.4% 和 12.2% 的自我纠正性能。
50 3
|
2月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
612 2
|
2月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
97 2

热门文章

最新文章