基于英特尔平台加速 AI 应用及 LLM 推理性能介绍|龙蜥大讲堂第115期

简介: 本文摘自龙蜥大讲堂英特尔 AI 软件工程师黄文欢的分享,主要包括以下三个方面的内容:1. 第五代英特尔至强处理器2. LLM 推理加速框架 xFast Transformer 及其优化策略3. 性能数据及 Demo 展示

基于英特尔平台加速 AI 应用及 LLM 推理性能介绍|龙蜥大讲堂第115期


内容介绍

1. 第五代英特尔至强处理器

2. LLM 推理加速框架 xFast Transformer 及其优化策略

3. 性能数据及 Demo 展示


image.png

 

01、第五代英特尔至强处理器

1.1 性能与特性提升

第五代英特尔至强处理器带来可靠性能和卓越效率,提升所有工作负载的性能和功耗比,为 AI、数据库、网络、存储和高性能计算提供出色性能。

image.png

相较于上一代处理器,两代之间功率相同,但第五代处理器计算能力更强,共享缓存更大,内存更快,且兼容上一代软件和平台,在为 AI 和其他工作负载部署新系统时,可最大限度地减少用户测试和验证工作量。

第五代英特尔至强处理器内置 AI加速器——高级矩阵扩展 Intel AMX,拥有更快的内存和更大的三级缓存,每个内核具备 AI加速功能,可随时处理 AI工作负载,提升深度学习推理和训练性能,在生成式 AI、推荐系统、自然语言处理、机器学习和图像分类等方向表现出色,其内存与IO

技术支持 DDR5、PCIE 5.0 和 CXL 等。

1.2 深度学习加速技术演进

image.png

自 Sky Lake 支持 AVX512 以来,深度学习训练和推理能力提升一倍;一年后,在 Cascade Lake 引入第一代深度学习加速技术 DL Boost VNNI,提升 INT8 吞吐量;在CooperLake 上,将 BFloat16 添加到 DL Boost 指令集,进一步提升深度学习训练和推理能力的性能。

硬件持续发展,第四代至强处理器推出了 AMX,提升从一维向量到二维矩阵的处理能力。

1.3 Intel AMX

image.png

Intel AMX 的全称是高级矩阵扩展,其目的是为了处理矩阵与加速 AI 相关的工作负载,它是第四代及第五代至强可扩展处理器内核,都有一个专用的硬件模块,有助于加速深度学习任务。

(1)架构图

image.png

AMX 是全新 x86 扩展,涉及复杂度高于其他深度学习加速技术扩展。它具有自己的存储和操作,引入新的二维寄存器 TILE。矩阵寄存器文件包括 8个 tile,分部命名为tmm0 - tmm7,每个 tile 最大 1KB,总大小 8KB。其乘法单元是矩阵乘法指令集 TMUL,可实现矩阵乘法运算,支持 INT8 和 BFloat16 数据类型。

(2)理论性能提升

image.png

理论上,AMX在 BF16 和 FP32 的对比中,单核单周期运算次数由 64 提升至 1024,达16倍在INT8 数据类型下,较上一代深度学习加速技术 VNNI性能提升 8 倍。换言之,无论是INT8或是 BF16,AMX 的处理性能都表现得更加出色。当然,在实际的工作负载中,其性能与矩阵的大小以及矩阵的占比都有关。

1.4 五代与四代性能对比

image.png

对于归一化的性能,以第四代至强可扩展处理器为基准线,第五代至强处理器在 AI 训练、AI 实时推理和 AI 批量处理方面性能均有可靠提升测试模型包括 BERT、DLRM、MaskRCNN、RNN-T、Resnext 等主流模型。

 

02、LLM 推理加速框架 xFast Transformer 及其优化策略

2.1 框架简介

image.png

xFast Transformer 是英特尔开源的推理框架,遵循 Apache 2.0 许可为大语言模型在英特尔平台上的推理加速提供深度优化解决方案。xFast Transformer 支持分布式推理的单机跨 Socket 和多机跨节点分布式部署,提供 C++ 和 Python 接口,涵盖了从上层到底层的接口调用,易于使用,可以使用户更加方便地将其集成到自有的框架业务中。它支持多种数据类型(如 BF16、FP16、INT8、INT4 等)和主流大语言模型(如 ChatGLM、LLAMA、Baichuan、千问、OPT 等)。

2.2 架构图

image.png

其架构上层提供 C++ 和 Python 接口,并支持主流大语言模型及优化算子(如 Attention、MLP、LayNorm 等)底层集成 oneDNN、oneCCL 等优化库。oneDNN 提供大量基础算子优化,如矩阵乘法 Softmax 和常用激活函数等,为大语言模型推理提供了基本的 Kernel支持,API对不同平台统一,底层可自动调度到当前平台最高指令集,将操作加速到更高的性能水准,从而提升整体的计算效率。如在支持高级矩阵扩展 AMX 加速基础的平台上采用集成了xFast Transformer会自动识别并使用 AMX 对矩阵运算进行加速,提升推理性能。

2.3 优化策略

xFast Transformer 的优化采用了自上而下的多种优化策略

(1)分布式推理优化

image.png

在分布式推理的过程中,通信延迟对分布式推理性能影响大,xFast Transformer 在高效通信库 oneCCL 基础上优化通信实现降低通信量。

例如,在每轮推理的初始阶段,推荐的实现方式是广播 TokenID,而非广播通过 TokenID 查到的 Embedding 值。在每轮推理结束时,直接对所有 Token 的 Logics 进行 Reduce 并非最佳选择。更有效的方法是让各个 Worker 计算出 Topk后再进行 Reduce 操作

image.png

此外,我们需要根据模型结构优化通信方式。如 GPT- J模型,其Attention 部分和 Feed Forward Network 并行,我们可以在每一个Decoder Layer 上只做一次通信。另外,计算与通信模块交互时采用激进方式实现零拷贝,即计算模块在做通信前的最后一次运算时,直接将结果写到通讯模块所在的位置。

关于分布式优化更详细的说明,可以参考发表在 ICLR 2024 Workshop 上的论文。

(2)Attention 优化

算子融合、最小化数据拷贝、重拍操作和内存重复利用等是常用优化手段,有效管理内存可减少占用、提高缓存命中率,提升整体性能。此外

还可减少大语言模型工作流程中的不必要计算开销,提升数据重用度和计算效率。以 Attention 为例。

image.png

Attention 是 xFast Transformer 模型关键热点之一,其资源消耗与序

列长度的平方成正比,长序列输入时优化尤为重要。我们提出了两种优化策略

①SlimAttention

如上图右侧所示,其本质是对 Query 和 Key 之间的 Score 做一维拆分先计算横向 Score、Softmax,再乘 Value 得到部分 Output,再使用同个 Score Buffer 计算下一个 Block。每个线程维护一个 Block 大小的Buffer,减少内存使用、提升计算效率。

②FlashAttention

如上图右侧所示,它是 GPU 率先使用的技术,本质是对 Score 做二维拆分,每个线程维护一个 Tile。但因 Tile 在 Softmax 方向数据不全,

计算过程需对结果反复校正。

对比两者策略,Slimattention 没有冗余计算,但是要更大的中间Buffer。

实验结果也表明,对于特别长的 Token,Flashattention 有较强优势;对于较短的 Token,Slimattention 是更好的选择。更多的技术细节可以参考开源的 xFast Transformer 项目。

(3)低精度量化和稀疏化

image.png

在大语言模型推理优化的过程中,量化是一种非常重要的方法。通过低精度数据类型或权重稀疏化降低内存带宽需求,在推理速度和准确度间取得平衡。xFast Transformer 支持多种数据类型实现模型推理和部署包括单精度和混合精度(首包和生成图层精度可任意组合),充分利用计算资源和带宽资源提升大语言模型的推理速度。将模型量化为INT8、INT4 的数据类型,可以显著提升模型的推理性能。同时,利用AWQ、GPTQ方式提升量化精度。

多种不同的数据类型的输入输出对底层算子库提出了多远的适配要求。xFast Transformer 框架中已实现对多种数据类型输入输出的适配,满足大语言模型对底层 Kernel 的需求。

 

03、性能数据及 Demo 展示

3.1 性能情况

(1)第四代至强平台

image.png

单颗至强 Max 处理器可同时部署四路大语言模型推理服务,同时满足首包和生成速度性能要求,每个模型只需 12个核和四分之一内存带宽。上图左侧是首包性能图,右侧是 Next Token 性能图。可以看到,两者的生成速度约在 90 - 100+ 的区间,远小于人类阅读速度

(2)分布式

image.png

上图展现了 xFast Transformer 分布式的性能效果。图中1个Node 指的是两个 Socket 的第五代至强可扩展处理器,每个 Socket 上有 52 个核。输入 Token1024,输出Token128时,4个Node 相比1个 Node 可实现近三倍的性能提升。

(3)Serving

image.png

上图展现了 xFast Transformer serving的能力。在两个 Socket 的第五代至强可扩展处理器 AMX 上,硬件配置是 48 核,每个 Socket 采用BF16 数据类型,使用 Qwen2-7B 模型统计 the script of benchmark throughput.py 脚本,其 Throughput 可达 3000+ tokens/s。

3.2 基于龙蜥操作系统的 Demo 演示 1

(1)购买实例

提前在阿里云购买一台实例输入 cat /etc/os-release 查询实例信息。

image.png

可以看到,使用的是龙蜥操作系统 Anolis OS 8.8 版本。

输入 lscpu 查看 CPU 信息:

image.png

可知,购买的是 32 个 VCPU 的实例,硬件平台是英特尔第五代至强平台,支持 amx_bf16、amx_int8 等;

(2)安装 xFast Transformer

输入 pip3 install xfasttransformer,完成 xFast Transformer的安装。

(3)xFast Transformer 配置

输入 git clone https://github.com/intel/xFastTransformer^C ,从GitHub 拉取源码。输入cd xFastTransformer/,进入其目录。

运行xFast Transformer推理优化引擎,还需安装依赖包。输入 pip3 install -r requirements.txt 在 requirements 文件中安装依赖包。

(4)运行 xFast Transformer 引擎

①模型转换

以 Qwen2-7B 模型为例,将下载的模型放入该目录下,使用 Qwen2 的脚本,输入 python -c‘import xfasttransformer as xft

xft.Qwen2Convert().convert(“/data/Qwen2-7B-Instruct/”)’进行模型转化。转换命令根据模型和需求(如 Llama、OPT 等)设置,其他模型也有相应转换操作,可从 GitHub 的 README 获取信息。

另外,在云环境上转换模型时,物理核通过超线程的方式扩展成两个逻辑核。在大语言模型场景下,超线程带来的收益欠佳,还会引发调度等方面的额外开销。因此,我们建议在运行大语言模型中,避免使用超线程产生的逻辑核。如上述案例中的 32VCPU实例,其对应 16 个物理核,可以通过相应的命令获得相应的物理核,并通过 Numactl 工具将需要运行的应用绑定在对应的物理核上。

image.png

上图即可说明该模型转换成功,也可将 data/Qwen2-7B-Instruct-xft更换为自定义路径。

②设置环境变量

模型转换成功后,输入 cd examples/pytorch 进入 demo 目录,

通过 export $(python -c‘import xfasttransformer as xft ; print(xft.get env()))设置环境变量,以获取更优性能。

③运行 Demo

输入 ll 进入 Demo 目录,查看该 Demo 下提供的脚本。

image.png

输入命令 OMP_NUM_THREADS = 16 numactl -c $(seq -s,0 2 30)python demo.py d int8--chat true --output len 128 -t /data/Qwen2-7B-Instruct -m /data/Qwen2-7B-Instruct-xft/(由于使用的是 32 vCPU实例,故 OMP 线程使用 16 个物理核;使用 numactl -C工具将应用绑定到对应的物理核上;-d 是指数据类型可以指定为int8、bf16等;该聊天机器人中提供 Chat 功能,设置为 true;output len可设置为目标值;-t 后是对应的 Token 的路径;-m 是转换所需的模型文件)。

此时,即可实现 Chat 功能。如输入“你好,介绍一下自己”或输入“你知道龙蜥大讲堂吗”,就会返回相应的内容,文本产生的速度较快。

image.png

3.3 基于 Gradient 的 Web Demo 演示 2

输入 cd ../web_demo/进入该演示。

输入 pip3 install -r examples/web_demo/requirements.txt安装相应的依赖。输入命令 OMP_NUM_THREADS=16 numactl -C $(seg -s,0 2 30)python demo.py -d int8 -t /data/Qwen2-7B-Instruct -m /data/Qwen2-7B-Instruct -xft/(OMP 线程使用16 个物理核;使用 numactl -C 工具将应用绑定到对应的物理核上;运行 Qwen2 的脚本)。

输入ls 查询该 web demo 下提供的脚本。

image.png

可以看到它提供了 Baichuan、ChatGLM、Llama、Qwen 等脚本。

输入OMP_NUM_THREADS=16 numactl -c $(seq-s,0 2 30)python demo.py -d int8 -t /data/Qwen2-7B-Instruct -m /data/Qwen2-7B-Instruct -xft/,运行 Qwen2 查看 demo 的运行效果。待页面提示“Running on local URL:……”后说明该 Demo 已启用。

进入 Web Demo 界面:

image.png

案例中是通义千问2的模型,基于xFastTransformer 优化推理引擎端口是 7860,在阿里云上需要暴露相关的端口。可以通过本级地址访问,也可以通过 Gradient 的相关设置进行公网 IP 的访问。

可以输入“龙蜥(OpenAnolis)是一个什么样的平台?”进行询问,结果返回如下,速度也非常快。

image.png

再如输入“介绍一下英特尔至强处理器”,也可以返回相应的内容。

image.png

以上就是本次分享的全部内容。

目录
打赏
0
3
3
0
1032
分享
相关文章
让AI读懂K线图!ChatTS-14B:字节开源的时间序列理解和推理大模型,自然语言提问秒解趋势密码!
ChatTS-14B是字节跳动开源的时间序列专用大模型,基于Qwen2.5-14B微调优化,通过合成数据对齐技术显著提升分析能力,支持自然语言交互完成预测推理等复杂任务。
40 1
让AI读懂K线图!ChatTS-14B:字节开源的时间序列理解和推理大模型,自然语言提问秒解趋势密码!
面向 MoE 和推理模型时代:阿里云大数据 AI 产品升级发布
2025 AI 势能大会上,阿里云大数据 AI 平台持续创新,贴合 MoE 架构、Reasoning Model 、 Agentic RAG、MCP 等新趋势,带来计算范式变革。多款大数据及 AI 产品重磅升级,助力企业客户高效地构建 AI 模型并落地 AI 应用。
高考理科题AI秒解!昆仑万维开源多模态推理模型 Skywork-R1V 2.0
Skywork-R1V 2.0是昆仑万维最新开源的多模态推理模型,通过混合强化学习和多模态奖励模型实现复杂推理任务,在理科题目解答和科研分析中展现出色性能。
55 11
高考理科题AI秒解!昆仑万维开源多模态推理模型 Skywork-R1V 2.0
医学AI推理新突破!MedReason:这个AI把医学论文变「会诊专家」,8B模型登顶临床问答基准
MedReason是由多国顶尖学术机构联合开发的医学推理框架,通过知识图谱增强大模型在医疗领域的逻辑推理能力,其8B参数模型在复杂临床场景中达到最先进水平。
99 18
医学AI推理新突破!MedReason:这个AI把医学论文变「会诊专家」,8B模型登顶临床问答基准
RAGEN:RL训练LLM推理新范式!开源强化学习框架让Agent学会多轮决策
RAGEN是一个基于StarPO框架的开源强化学习系统,通过马尔可夫决策过程形式化Agent与环境的交互,支持PPO、GRPO等多种优化算法,显著提升多轮推理训练的稳定性。
29 4
RAGEN:RL训练LLM推理新范式!开源强化学习框架让Agent学会多轮决策
这个开源AI平台把文生图/音/字全包了!Pollinations.AI:提供完全免费的AI内容生成
Pollinations.AI 是一个开源的AI内容生成平台,提供免费的文本、图像、音频生成及转换API,无需注册即可使用,支持多种模型和自定义参数,适合开发者和创作者快速集成。
117 15
这个开源AI平台把文生图/音/字全包了!Pollinations.AI:提供完全免费的AI内容生成
首发,Higress AI 网关率先支持 QwQ-32B,推理成本可再降 90%
QwQ-32B 是一款拥有 320 亿参数的大模型,性能媲美 6710 亿参数的 DeepSeek-R1。它支持本地运行、显著降低企业调用成本(最高降 90%),并在 Hugging Face 和 ModelScope 开源。本文提供通过 Higress AI 网关实现 DeepSeek-R1 和 QwQ-32B 无缝切换的教程,涵盖环境准备、模型接入配置及客户端调用示例。Higress AI 网关还具备消费者鉴权、模型自动切换、Token 级限流等进阶功能,助力企业高效管理多模型服务。
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力,用户只需提交 npx 命令即可“零改造”将开源 MCP Server 部署到云上,函数计算 FC 会准备好计算资源,并以弹性、可靠的方式运行 MCP 服务,按实际调用时长和次数计费,欢迎你在阿里云百炼和函数计算 FC 上体验 MCP 服务。
151 29
破茧成蝶:传统J2EE应用无缝升级AI原生
本文探讨了技术挑战和解决方案,还提供了具体的实施步骤,旨在帮助企业顺利实现从传统应用到智能应用的过渡。
破茧成蝶:传统J2EE应用无缝升级AI原生
一键部署 Dify + MCP Server,高效开发 AI 智能体应用
本文将着重介绍如何通过 SAE 快速搭建 Dify AI 研发平台,依托 Serverless 架构提供全托管、免运维的解决方案,高效开发 AI 智能体应用。
2294 64