多模态大模型LLM、MLLM性能评估方法

简介: 针对多模态大模型(LLM)和多语言大模型(MLLM)的性能评估,本文介绍了多种关键方法和标准,包括模态融合率(MIR)、多模态大语言模型综合评估基准(MME)、CheckList评估方法、多模态增益(MG)和多模态泄露(ML),以及LLaVA Bench。这些方法为评估模型的多模态和多语言能力提供了全面的框架,有助于研究者和开发者优化和改进模型。

针对多模态大模型(LLM)和多语言大模型(MLLM)的性能评估方法,以下是一些关键的评估方法和标准:

  1. 模态融合率(MIR)

    • 中国科学技术大学提出了模态融合率(MIR)来高效评估多模态预训练对齐质量。MIR能够准确对应模型在有监督微调后在下游测试基准上的得分,与损失值(Loss)、困惑度(PPL)和上下文评估(In-Context)相比,MIR显示出更好的稳定性和可靠性。
  2. 多模态大语言模型综合评估基准(MME)

    • MME是一个综合评估基准,旨在全面评估MLLMs的感知和认知能力。它包括14个子任务,覆盖从对象识别到常识推理、数值计算、文本翻译和代码推理等多个方面。MME的指令设计简洁,以“是或否”的形式输出,便于定量统计和评估。
  3. CheckList评估方法

    • 受到软件工程中行为测试的启发,CheckList是一种全新的NLP模型测试方法,帮助人们更为清晰、系统地了解各种模型的优缺点。它通过验证输入输出行为来测试一个系统的不同的能力。
  4. 多模态增益(MG)和多模态泄露(ML)

    • 为了评估LVLMs在多模态训练中的实际性能提升和数据泄露程度,提出了两个新的度量指标:多模态增益(MG)和多模态泄露(ML)。MG量化模型在接收到视觉信息时相对于仅使用文本信息时的性能提升,而ML评估模型在训练过程中可能无意中记忆的数据的程度。
  5. LLaVA Bench

    • LLaVA-Bench是专门针对LMM设计的开放世界视觉聊天基准,它提供了一个评估多模态学习能力的平台,弥合了语言和视觉理解之间的差距。

这些评估方法和标准为多模态大模型和多语言大模型的性能评估提供了全面的框架,帮助研究者和开发者理解模型的能力和局限性,指导后续的模型优化和应用开发。

相关文章
|
3月前
|
机器学习/深度学习 人工智能 人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
417 121
|
3月前
|
数据采集 人工智能 搜索推荐
智能新纪元:多模态大模型如何重塑人机交互
智能新纪元:多模态大模型如何重塑人机交互
280 113
|
3月前
|
人工智能 人机交互 知识图谱
当AI学会“融会贯通”:多模态大模型如何重塑未来
当AI学会“融会贯通”:多模态大模型如何重塑未来
335 114
|
3月前
|
人工智能 安全 搜索推荐
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
313 117
|
5月前
|
数据采集 机器学习/深度学习 编解码
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
662 0
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
|
4月前
|
人工智能 数据可视化 前端开发
AI Ping:精准可靠的大模型服务性能评测平台
AI Ping是清华系团队推出的“大模型服务评测平台”,被誉为“AI界的大众点评”。汇聚230+模型服务,7×24小时监测性能数据,以吞吐量、延迟等硬指标助力开发者科学选型。界面简洁,数据可视化强,支持多模型对比,横向对标国内外主流平台,为AI应用落地提供权威参考。
1081 3
|
4月前
|
存储 缓存 负载均衡
LLM推理成本直降60%:PD分离在大模型商业化中的关键价值
在LLM推理中,Prefill(计算密集)与Decode(访存密集)阶段特性不同,分离计算可提升资源利用率。本文详解vLLM框架中的PD分离实现及局限,并分析Dynamo、Mooncake、SGLang等主流方案,探讨KV缓存、传输机制与调度策略,助力LLM推理优化。建议点赞收藏,便于后续查阅。
2369 3
|
4月前
|
机器学习/深度学习 编解码 人工智能
InternVL3.5多模态大模型开源发布,1B-241B九种尺寸,支持跨平台GUI自动化与矢量图生成
近日,上海人工智能实验室(上海AI实验室)重磅开源发布了多模态大模型书生·万象 InternVL3.5,通过创新的级联式强化学习(Cascade RL)、动态视觉分辨率路由与解耦部署架构,实现推理能力、部署效率与通用能力的全面升级。
1319 7
|
3月前
|
监控 安全 Docker
10_大模型开发环境:从零搭建你的LLM应用平台
在2025年,大语言模型(LLM)已经成为AI应用开发的核心基础设施。无论是企业级应用、科研项目还是个人创新,拥有一个高效、稳定、可扩展的LLM开发环境都至关重要。
|
3月前
|
人工智能 自然语言处理 监控
09_LLM评估方法:如何判断模型性能的好坏
在2025年的今天,大语言模型(LLM)已经成为人工智能领域的核心技术,它们能够理解和生成人类语言,执行复杂的认知任务。然而,随着模型能力的不断提升,如何科学、全面地评估这些模型的性能,成为了一个至关重要的问题。

热门文章

最新文章