Python示例,展示如何找到最近一次死叉之后尚未形成金叉的位置

简介: 【10月更文挑战第7天】金融分析中,“死叉”指短期移动平均线(如MA5)跌破长期移动平均线(如MA10),而“金叉”则相反。本文提供Python代码示例,用于找出最近一次死叉后未形成金叉的位置,涵盖移动平均线计算、交叉点判断及结果输出等步骤,适合金融数据分析。

在金融分析中,“死叉”是指短期移动平均线(如5日均线 MA5)跌破长期移动平均线(如10日均线 MA10),而“金叉”则是指短期移动平均线再次上穿长期移动平均线。为了找到最近一次死叉之后尚未形成金叉的位置,我们需要进一步检查在死叉之后的走势。

下面是一个具体的Python示例,展示如何找到最近一次死叉之后尚未形成金叉的位置。

示例代码

import pandas as pd

# 假设已经有了一个包含收盘价数据的DataFrame df
# df = pd.read_csv('path_to_your_data.csv')  # 从CSV文件加载数据
# df['Close'] = ...  # 如果需要从其他来源获取收盘价数据

# 计算5日和10日的移动平均线
df['MA5'] = df['Close'].rolling(window=5).mean()
df['MA10'] = df['Close'].rolling(window=10).mean()

# 确定MA5和MA10的交叉点
# 我们使用shift函数来比较前一天的MA5是否高于MA10,而当天的MA5低于MA10
df['Cross'] = (df['MA5'] > df['MA10']) != (df['MA5'].shift(1) > df['MA10'].shift(1))

# 确定死叉位置
df['DeadCross'] = (df['MA5'] < df['MA10']) & (df['MA5'].shift(1) >= df['MA10'].shift(1))

# 确定金叉位置
df['GoldenCross'] = (df['MA5'] > df['MA10']) & (df['MA5'].shift(1) <= df['MA10'].shift(1))

# 确定最近一次死叉之后没有金叉的位置
last_dead_cross = df[df['DeadCross']].tail(1)
golden_cross_after_last_dead_cross = df.loc[last_dead_cross.index[0]:, 'GoldenCross']

# 输出最近一次死叉之后没有金叉的信息
if not last_dead_cross.empty and not golden_cross_after_last_dead_cross.any():
    print("最近一次5日均线死叉10日均线发生在:")
    print(last_dead_cross[['Close', 'MA5', 'MA10']])
    print("最近一次死叉发生在日期:", last_dead_cross.index[0])
    print("在此之后没有发生金叉。")
elif not last_dead_cross.empty and golden_cross_after_last_dead_cross.any():
    print("最近一次5日均线死叉10日均线发生在:")
    print(last_dead_cross[['Close', 'MA5', 'MA10']])
    print("最近一次死叉发生在日期:", last_dead_cross.index[0])
    print("在此之后发生了金叉。")
else:
    print("没有找到5日均线死叉10日均线的情况。")

代码解析

  1. 计算移动平均线:

    • 使用rolling函数来创建一个滚动窗口。
    • 使用mean函数来计算每个窗口的平均值。
  2. 判断交叉:

    • df['MA5'] > df['MA10']表示当前MA5是否高于MA10。
    • df['MA5'].shift(1) > df['MA10'].shift(1)表示前一天MA5是否高于MA10。
    • 使用这两个条件的异或运算(!=)来判断是否发生了交叉。
  3. 判断死叉和金叉:

    • df['DeadCross']表示死叉发生的条件。
    • df['GoldenCross']表示金叉发生的条件。
  4. 查找最近一次死叉:

    • 使用tail(1)函数来获取最近一次死叉的记录。
  5. 检查死叉之后是否有金叉:

    • 从最近一次死叉的位置开始,检查之后是否发生了金叉。
  6. 输出结果:

    • 如果找到了死叉并且之后没有发生金叉,则输出相关信息;如果没有找到死叉或者之后发生了金叉,则输出提示信息。

通过这种方式,我们可以找到最近一次死叉之后尚未形成金叉的位置。这个方法适用于任何包含收盘价数据的DataFrame,并且可以很容易地扩展到其他类型的移动平均线或者其他金融指标分析中去。

目录
相关文章
|
3月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
3月前
|
存储 Python
Python示例:分解一个不多于指定位的正整数
Python示例:分解一个不多于指定位的正整数
30 0
|
1月前
|
数据挖掘 Python
Python示例,展示如何找到最近一次死叉之后尚未形成金叉的位置
金融分析中,“死叉”指短期移动平均线(如MA5)跌破长期移动平均线(如MA10),而“金叉”则相反。本文提供Python代码示例,用于找出最近一次死叉后未形成金叉的位置,涵盖移动平均线计算、交叉点判断及结果输出等步骤,适合金融数据分析。
22 1
|
3月前
|
机器学习/深度学习 数据采集 算法
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
有多种方法可以处理时间序列数据中的噪声。本文将介绍一种在我们的研究项目中表现良好的方法,特别适用于时间序列概况中数据点较少的情况。
56 1
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
|
3月前
|
Python
Python编程的循环结构小示例(二)
Python编程的循环结构小示例(二)
44 1
|
2月前
|
Linux Android开发 开发者
【Python】GUI:Kivy库环境安装与示例
这篇文章介绍了 Kivy 库的安装与使用示例。Kivy 是一个开源的 Python 库,支持多平台开发,适用于多点触控应用。文章详细说明了 Kivy 的主要特点、环境安装方法,并提供了两个示例:一个简单的 Hello World 应用和一个 BMI 计算器界面。
70 0
|
4月前
|
JSON API 数据格式
python 使用 Stable Diffusion API 生成图片示例
本文提供了一个使用Python调用Stable Diffusion API生成图片的示例程序,包括启动API设置、发送POST请求、保存生成的图片和JSON数据,以及如何通过API调用特定模型的说明。
python 使用 Stable Diffusion API 生成图片示例
|
2月前
|
PyTorch 测试技术 算法框架/工具
Python中Thop库的常见用法和代码示例
肆十二在B站分享了关于THOP(Torch-OpCounter)的实战教学视频。THOP是一个用于计算PyTorch模型操作数和计算量的工具,帮助开发者评估模型复杂度和性能。本文介绍了THOP的安装、使用方法及基本用例,包括如何计算模型的FLOPs和参数量。
118 0
|
2月前
|
Python
Python中tqdm模块的常用方法和示例
`tqdm` 是一个快速、可扩展的Python进度条库,适用于长循环中添加进度提示。通过封装迭代器 `tqdm(iterator)`,可以轻松实现进度显示。支持自定义描述、宽度及嵌套进度条,适用于多种迭代对象。在Jupyter notebook中,可自动调整显示效果。
45 0
|
2月前
|
Python
Python中threading模块的常用方法和示例
Python 的 `threading` 模块提供了多线程编程的能力,允许同时执行多个线程。主要类包括 `Thread`、`Lock` 和 `Condition`。`Thread` 类用于创建和管理线程,`Lock` 用于同步线程,防止资源竞争,`Condition` 用于线程间协调。本文介绍了这些类的常用方法及示例代码,帮助你更好地理解和使用多线程编程。
29 0