Flink-05 Flink Java 3分钟上手 Redis FlinkJedisPoolConfig 从Kafka写入Redis FlinkKafkaConsumer消费 结果写入Redis

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: Flink-05 Flink Java 3分钟上手 Redis FlinkJedisPoolConfig 从Kafka写入Redis FlinkKafkaConsumer消费 结果写入Redis

代码仓库

会同步代码到 GitHub

https://github.com/turbo-duck/flink-demo

内容介绍

上节我们已经实现了,对Kafka数据的消费和计算,最终把结果输出到了控制台上。如下图:

Kafka In Docker

TestKafkaProducer

数据写入到Kafka中的效果

FlinkConsumer

Flink消费Kafka的效果如下图,已经按照我们的需求进行计算了。

这节内容

本节依然使用Flink对Kafka进行消费,但与上节不同的是(上节将结果输出到控制台上),本节将把Flink计算的结果输出到Redis中进行保存(当然也可以存储到别的地方,这里以Redis为例)。


pom.xml

重点关注 flink-connector-redis_2.11 这个包。这是Redis相关的依赖。

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>flink-demo-01</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <flink.version>1.13.2</flink.version>
        <scala.binary.version>2.12</scala.binary.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-redis_2.11</artifactId>
            <version>1.1.0</version>
        </dependency>

    </dependencies>
</project>

KafkaProducer.java

生产数据存入到Kafka这种

package icu.wzk.demo05;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;

public class TestKafkaProducer {

    public static void main(String[] args) throws InterruptedException {
        Properties props = new Properties();
        props.put("bootstrap.servers", "0.0.0.0:9092");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        Producer<String, String> producer = new KafkaProducer<>(props);
        for (int i = 0; i < 500; i++) {
            String key = "key-" + i;
            String value = "value-" + i;
            ProducerRecord<String, String> record = new ProducerRecord<>("test", key, value);
            producer.send(record);
            System.out.println("send: " + key);
            Thread.sleep(200);
        }
        producer.close();
    }

}

StartApp

Flink消费Kafka,计算后写入到Redis中。

FlinkJedisPoolConfig

连接池的配置

MyRedisMapper

自定义的Mapper,需要实现RedisMapper

完整代码

package icu.wzk.demo05;


import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;

import java.util.Properties;

public class StartApp {

    private static final String KAFKA_SERVER = "0.0.0.0:9092";

    private static final Integer KAFKA_PORT = 9092;

    private static final String KAFKA_TOPIC = "test";

    private static final String REDIS_SERVER = "0.0.0.0";

    private static final Integer REDIS_PORT = 6379;

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", String.format("%s:%d", KAFKA_SERVER, KAFKA_PORT));
        FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>(KAFKA_TOPIC, new SimpleStringSchema(), properties);
        DataStreamSource<String> data = env.addSource(consumer);

        SingleOutputStreamOperator<Tuple2<String, String>> wordData = data.map(new MapFunction<String, Tuple2<String, String>>() {
            @Override
            public Tuple2<String, String> map(String value) throws Exception {
                return new Tuple2<>("l_words", value);
            }
        });

        FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig
                .Builder()
                .setHost(REDIS_SERVER)
                .setPort(REDIS_PORT)
                .build();
        RedisSink<Tuple2<String, String>> redisSink = new RedisSink<>(conf, new MyRedisMapper());
        wordData.addSink(redisSink);
        env.execute();
    }

    public static class MyRedisMapper implements RedisMapper<Tuple2<String,String>> {

        @Override
        public RedisCommandDescription getCommandDescription() {
            return new RedisCommandDescription(RedisCommand.LPUSH);
        }

        @Override
        public String getKeyFromData(Tuple2<String,String> data) {
            return data.f0;
        }

        @Override
        public String getValueFromData(Tuple2<String,String> data) {
            return data.f1;
        }
    }

}


目录
相关文章
|
19天前
|
存储 SQL NoSQL
Redis-常用语法以及java互联实践案例
本文详细介绍了Redis的数据结构、常用命令及其Java客户端的使用,涵盖String、Hash、List、Set、SortedSet等数据类型及操作,同时提供了Jedis和Spring Boot Data Redis的实战示例,帮助开发者快速掌握Redis在实际项目中的应用。
174 1
Redis-常用语法以及java互联实践案例
消息中间件 存储 传感器
70 0
|
4月前
|
缓存 监控 NoSQL
Redis 实操要点:Java 最新技术栈的实战解析
本文介绍了基于Spring Boot 3、Redis 7和Lettuce客户端的Redis高级应用实践。内容包括:1)现代Java项目集成Redis的配置方法;2)使用Redisson实现分布式可重入锁与公平锁;3)缓存模式解决方案,包括布隆过滤器防穿透和随机过期时间防雪崩;4)Redis数据结构的高级应用,如HyperLogLog统计UV和GeoHash处理地理位置。文章提供了详细的代码示例,涵盖Redis在分布式系统中的核心应用场景,特别适合需要处理高并发、分布式锁等问题的开发场景。
287 40
|
4月前
|
缓存 NoSQL Java
Java Redis 面试题集锦 常见高频面试题目及解析
本文总结了Redis在Java中的核心面试题,包括数据类型操作、单线程高性能原理、键过期策略及分布式锁实现等关键内容。通过Jedis代码示例展示了String、List等数据类型的操作方法,讲解了惰性删除和定期删除相结合的过期策略,并提供了Spring Boot配置Redis过期时间的方案。文章还探讨了缓存穿透、雪崩等问题解决方案,以及基于Redis的分布式锁实现,帮助开发者全面掌握Redis在Java应用中的实践要点。
198 6
|
4月前
|
Java 调度 流计算
基于Java 17 + Spring Boot 3.2 + Flink 1.18的智慧实验室管理系统核心代码
这是一套基于Java 17、Spring Boot 3.2和Flink 1.18开发的智慧实验室管理系统核心代码。系统涵盖多协议设备接入(支持OPC UA、MQTT等12种工业协议)、实时异常检测(Flink流处理引擎实现设备状态监控)、强化学习调度(Q-Learning算法优化资源分配)、三维可视化(JavaFX与WebGL渲染实验室空间)、微服务架构(Spring Cloud构建分布式体系)及数据湖建设(Spark构建实验室数据仓库)。实际应用中,该系统显著提升了设备调度效率(响应时间从46分钟降至9秒)、设备利用率(从41%提升至89%),并大幅减少实验准备时间和维护成本。
262 0
|
4月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
5月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
177 11
|
5月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
在数字化转型中,企业亟需从海量数据中快速提取价值并转化为业务增长动力。5月15日19:00-21:00,阿里云三位技术专家将讲解Kafka与Flink的强强联合方案,帮助企业零门槛构建分布式实时分析平台。此组合广泛应用于实时风控、用户行为追踪等场景,具备高吞吐、弹性扩缩容及亚秒级响应优势。直播适合初学者、开发者和数据工程师,参与还有机会领取定制好礼!扫描海报二维码或点击链接预约直播:[https://developer.aliyun.com/live/255088](https://developer.aliyun.com/live/255088)
352 35
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
|
9月前
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
12月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
398 1