大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-122 - Flink Time Watermark Java代码测试实现Tumbling Window

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(正在更新!)

章节内容

上节我们完成了如下的内容:


Flink Time 详解

示例内容分析

Watermark

Watermark

Watermark 在窗口计算中的作用

在使用基于事件时间的窗口时,Flink 依赖 Watermark 来决定何时触发窗口计算。例如,如果你有一个每 10 秒的滚动窗口,当 Watermark 达到某个窗口的结束时间后,Flink 才会触发该窗口的计算。


假设有一个 10 秒的窗口,并且 Watermark 达到 12:00:10,此时 Flink 会触发 12:00:00 - 12:00:10 的窗口计算。


如何处理迟到事件

尽管 Watermark 能有效解决乱序问题,但总有可能会出现事件在生成 Watermark 之后才到达的情况(即“迟到事件”)。为此,Flink 提供了处理迟到事件的机制:


允许一定的延迟处理:可以配置窗口允许迟到的时间。

迟到事件的侧输出流(Side Output):可以将迟到的事件发送到一个侧输出流中,以便后续处理。


DataStream<Tuple2<String, Integer>> mainStream = 
  stream.keyBy(t -> t.f0)
        .window(TumblingEventTimeWindows.of(Time.seconds(10)))
        .allowedLateness(Time.seconds(5))
        .sideOutputLateData(lateOutputTag);

代码实现

数据格式

01,1586489566000
01,1586489567000
01,1586489568000
01,1586489569000
01,1586489570000
01,1586489571000
01,1586489572000
01,1586489573000
01,1586489574000
01,1586489575000
01,1586489576000
01,1586489577000
01,1586489578000
01,1586489579000

编写代码

这段代码实现了:


通过 socket 获取实时流数据。

将流数据映射成带有时间戳的二元组形式。

应用了一个允许 5 秒乱序的水印策略,确保 Flink 可以处理乱序的事件流。

按照事件的 key 进行分组,并在事件时间的基础上进行 5 秒的滚动窗口计算。

最后输出每个窗口内事件的时间范围、窗口开始和结束时间等信息。

其中,这里对流数据进行了按 key(事件的第一个字段)分组,并且使用了 滚动窗口(Tumbling Window),窗口长度为 5 秒。

在 apply 方法中,你收集窗口中的所有事件,并根据事件时间戳进行排序,然后输出每个窗口的开始和结束时间,以及窗口中最早和最晚事件的时间戳。

SingleOutputStreamOperator<String> res = waterMark
    .keyBy(new KeySelector<Tuple2<String, Long>, String>() {
        @Override
        public String getKey(Tuple2<String, Long> value) throws Exception {
            return value.f0;
        }
    })
    .window(TumblingEventTimeWindows.of(Time.seconds(5)))
    .apply(new WindowFunction<Tuple2<String, Long>, String, String, TimeWindow>() {
        @Override
        public void apply(String s, TimeWindow window, Iterable<Tuple2<String, Long>> input, Collector<String> out) throws Exception {
            List<Long> list = new ArrayList<>();
            for (Tuple2<String, Long> next : input) {
                list.add(next.f1);
            }
            Collections.sort(list);
            SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
            String result = "key: " + s + ", list.size(): " + list.size() + ", list.get(0): " + sdf.format(list.get(0)) + ", list.get(last): " + sdf.format(list.get(list.size() - 1))
                    + ", start: " + sdf.format(window.getStart()) + ", end: " + sdf.format(window.getEnd());
            out.collect(result);
        }
    });

水印的策略,定义了一个Bounded Out-of-Orderness 的水印策略,允许最多 5 秒的事件乱序,在 extractTimestamp 中,提取了事件的时间戳,并打印出每个事件的 key 和对应的事件时间。还维护了一个 currentMaxTimestamp 来记录当前最大的事件时间戳:

WatermarkStrategy<Tuple2<String, Long>> watermarkStrategy = WatermarkStrategy
    .<Tuple2<String, Long>>forBoundedOutOfOrderness(Duration.ofSeconds(5))
    .withTimestampAssigner(new SerializableTimestampAssigner<Tuple2<String, Long>>() {

        Long currentMaxTimestamp = 0L;
        final SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");

        @Override
        public long extractTimestamp(Tuple2<String, Long> element, long recordTimestamp) {
            long timestamp = element.f1;
            currentMaxTimestamp = Math.max(currentMaxTimestamp, timestamp);
            System.out.println("Key:" + element.f0 + ", EventTime: " + element.f1 + ", " + format.format(element.f1));
            return element.f1;
        }
    });

完整代码如下所示,代码实现了一个基于事件时间的流处理系统,并通过水印(Watermark)机制来处理乱序事件:

package icu.wzk;


import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

import java.text.SimpleDateFormat;
import java.time.Duration;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;


public class WatermarkTest01 {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        DataStreamSource<String> data = env.socketTextStream("localhost", 9999);
        SingleOutputStreamOperator<Tuple2<String, Long>> mapped = data.map(
                new MapFunction<String, Tuple2<String, Long>>() {
                    @Override
                    public Tuple2<String, Long> map(String value) throws Exception {
                        String[] split = value.split(",");
                        return new Tuple2<>(split[0], Long.valueOf(split[1]));
                    }
                }
        );

        WatermarkStrategy<Tuple2<String, Long>> watermarkStrategy = WatermarkStrategy
                .<Tuple2<String, Long>>forBoundedOutOfOrderness(Duration.ofSeconds(5))
                .withTimestampAssigner(new SerializableTimestampAssigner<Tuple2<String, Long>>() {

                    Long currentMaxTimestamp = 0L;
                    final SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");

                    @Override
                    public long extractTimestamp(Tuple2<String, Long> element, long recordTimestamp) {
                        long timestamp = element.f1;
                        currentMaxTimestamp = Math.max(currentMaxTimestamp, timestamp);
                        System.out.println("Key:" + element.f0 + ", EventTime: " + element.f1 + ", " + format.format(element.f1));
                        return element.f1;
                    }
                });

        SingleOutputStreamOperator<Tuple2<String, Long>> waterMark = mapped
                .assignTimestampsAndWatermarks(watermarkStrategy);
        SingleOutputStreamOperator<String> res = waterMark
                .keyBy(new KeySelector<Tuple2<String, Long>, String>() {
                    @Override
                    public String getKey(Tuple2<String, Long> value) throws Exception {
                        return value.f0;
                    }
                })
                .window(TumblingEventTimeWindows.of(Time.seconds(5)))
                .apply(new WindowFunction<Tuple2<String, Long>, String, String, TimeWindow>() {
                    @Override
                    public void apply(String s, TimeWindow window, Iterable<Tuple2<String, Long>> input, Collector<String> out) throws Exception {
                        List<Long> list = new ArrayList<>();
                        for (Tuple2<String, Long> next : input) {
                            list.add(next.f1);
                        }
                        Collections.sort(list);
                        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
                        String result = "key: " + s + ", list.size(): " + list.size() + ", list.get(0): " + sdf.format(list.get(0)) + ", list.get(last): " + sdf.format(list.get(list.size() - 1))
                                + ", start: " + sdf.format(window.getStart()) + ", end: " + sdf.format(window.getEnd());
                        out.collect(result);
                    }
                });

        res.print();
        env.execute();
    }
}

运行代码

传入数据

在控制台中,输入如下的数据:

查看结果

控制台运行结果如下:


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
18天前
|
Java API 开发工具
【Azure Developer】Java代码实现获取Azure 资源的指标数据却报错 "invalid time interval input"
在使用 Java 调用虚拟机 API 获取指标数据时,因本地时区设置非 UTC,导致时间格式解析错误。解决方法是在代码中手动指定时区为 UTC,使用 `ZoneOffset.ofHours(0)` 并结合 `withOffsetSameInstant` 方法进行时区转换,从而避免因时区差异引发的时间格式问题。
114 3
|
2月前
|
传感器 Java 大数据
Java 大视界 -- 基于 Java 的大数据实时数据处理在车联网车辆协同控制中的应用与挑战(197)
本文深入探讨了基于 Java 的大数据实时数据处理在车联网车辆协同控制中的关键应用与技术挑战。内容涵盖数据采集、传输与实时处理框架,并结合实际案例分析了其在车辆状态监测、交通优化与协同驾驶中的应用效果,展示了 Java 大数据技术在提升交通安全性与效率方面的巨大潜力。
|
2月前
|
存储 搜索推荐 算法
Java 大视界 -- Java 大数据在智能金融理财产品风险评估与个性化配置中的应用(195)
本文深入探讨了Java大数据技术在智能金融理财产品风险评估与个性化配置中的关键应用。通过高效的数据采集、存储与分析,Java大数据技术助力金融机构实现精准风险评估与个性化推荐,提升投资收益并降低风险。
Java 大视界 -- Java 大数据在智能金融理财产品风险评估与个性化配置中的应用(195)
|
1月前
|
存储 供应链 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在企业供应链风险预警与决策支持中的应用(204)
本篇文章探讨了基于 Java 的大数据可视化技术在企业供应链风险预警与决策支持中的深度应用。文章系统介绍了从数据采集、存储、处理到可视化呈现的完整技术方案,结合供应链风险预警与决策支持的实际案例,展示了 Java 大数据技术如何助力企业实现高效、智能的供应链管理。
|
1月前
|
存储 SQL Java
Java 大视界 -- Java 大数据在智能医疗手术风险评估与术前方案制定中的应用探索(203)
本文探讨了Java大数据技术在智能医疗手术风险评估与术前方案制定中的创新应用。通过多源数据整合、智能分析模型构建及知识图谱技术,提升手术风险预测准确性与术前方案制定效率,助力医疗决策智能化,推动精准医疗发展。
|
2月前
|
机器学习/深度学习 Java 大数据
Java 大视界 -- Java 大数据在智能政务公共资源交易数据分析与监管中的应用(202)
本篇文章深入探讨了 Java 大数据在智能政务公共资源交易监管中的创新应用。通过构建高效的数据采集、智能分析与可视化决策系统,Java 大数据技术成功破解了传统监管中的数据孤岛、效率低下和监管滞后等难题,为公共资源交易打造了“智慧卫士”,助力政务监管迈向智能化、精准化新时代。
|
2月前
|
数据采集 机器学习/深度学习 Java
Java 大视界 -- Java 大数据在智能体育赛事运动员体能监测与训练计划调整中的应用(200)
本篇文章聚焦 Java 大数据在智能体育赛事中对运动员体能监测与训练计划的智能化应用。通过构建实时数据采集与分析系统,结合机器学习模型,实现对运动员体能状态的精准评估与训练方案的动态优化,推动体育训练迈向科学化、个性化新高度。
|
2月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
2月前
|
存储 Java 大数据
Java 大视界 -- Java 大数据在智能家居能源消耗模式分析与节能策略制定中的应用(198)
简介:本文探讨Java大数据技术在智能家居能源消耗分析与节能策略中的应用。通过数据采集、存储与智能分析,构建能耗模型,挖掘用电模式,制定设备调度策略,实现节能目标。结合实际案例,展示Java大数据在智能家居节能中的关键作用。
|
2月前
|
存储 搜索推荐 算法
Java 大视界 -- Java 大数据在智慧文旅旅游线路规划与游客流量均衡调控中的应用实践(196)
本实践案例深入探讨了Java大数据技术在智慧文旅中的创新应用,聚焦旅游线路规划与游客流量调控难题。通过整合多源数据、构建用户画像、开发个性化推荐算法及流量预测模型,实现了旅游线路的精准推荐与流量的科学调控。在某旅游城市的落地实践中,游客满意度显著提升,景区流量分布更加均衡,充分展现了Java大数据技术在推动文旅产业智能化升级中的核心价值与广阔前景。

热门文章

最新文章