Java实现生产者消费者的四种方法

简介: Java生产者和消费者问题是线程安全模型中的经典问题:生产者和消费者在同一个时间段共用同一个存储空间,生产者向存储空间中添加产品呢,消费者取走产品,当存储空间为空时,消费者阻塞,当存储空间满时,生产者阻塞

Java生产者和消费者问题是线程安全模型中的经典问题:生产者和消费者在同一个时间段共用同一个存储空间,生产者向存储空间中添加产品呢,消费者取走产品,当存储空间为空时,消费者阻塞,当存储空间满时,生产者阻塞


实现生产者消费者的四种方式

  • 2.1,最基础的,利用 wait() 和 notify() 方法实现,当缓冲区满或为空时都调用 wait() 方法等待,当生产者生产了一个产品或消费者消费了一个产品后会唤醒所有线程;
package com.practice;
public class testMain {
    private  static  Integer count = 0;
    private  static  final Integer FULL = 10;
    private  static  String LOCK = "lock";
    public static void main(String[] args) {
        testMain testMain = new testMain();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
    }
    class Producer implements  Runnable{
        @Override
        public void run(){
            for (int i = 0; i < 10; i++) {
                try{
                    Thread.sleep(3000);
                }catch (Exception e){
                    e.printStackTrace();
                }
                synchronized (LOCK){
                    while(count == FULL){//缓存空间满了
                        try{
                            LOCK.wait();//线程阻塞
                        }catch (Exception e){
                            e.printStackTrace();
                        }
                    }
                    count++;//生产者
                    System.out.println(Thread.currentThread().getName() + "生产者生产,目前总共有"+count);
                    LOCK.notifyAll();//唤醒所有线程
                }
            }
        }
    }
    class Consumer implements Runnable{
        @Override
        public void run(){
            for (int i = 0; i < 10; i++) {
                try{
                    Thread.sleep(3000);
                }catch (InterruptedException e){
                    e.printStackTrace();
                }
                synchronized (LOCK){
                    while(count == 0){
                        try{
                            LOCK.wait();
                        }catch (Exception e){
                        }
                    }
                    count--;
                    System.out.println(Thread.currentThread().getName() + "消费者消费,目前总共有 "+count);
                    LOCK.notifyAll();//唤醒所有线程
                }
            }
        }
    }
}


2.2 java.util.concurrent.lock 中的 Lock 框架,通过对 lock 的 lock() 方法和 unlock() 方法实现对锁的显示控制,而 synchronize() 则是对锁的隐形控制,可重入锁也叫做递归锁,指的是同一个线程外层函数获得锁之后,内层递归函数仍然有获取该锁的代码,但不受影响;


简单来说,该锁维护这一个与获取锁相关的计数器,如果拥有锁的某个线程再次得到锁,那么获计数器就加1,函数调用结束计数器就减1,然后锁需要释放两次才能获得真正释放,已经获取锁的线程进入其他需要相同锁的同步代码块不会被阻塞

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class ReentrantLockTest {
    private  static  Integer count = 0;
    private  static  Integer FULL = 10;
    //创建一个锁对象
    private Lock lock = new ReentrantLock();
    //创建两个条件变量,一个为缓冲非满,一个缓冲区非空
    private  final  Condition notFull = lock.newCondition();
    private  final  Condition notEmpty = lock.newCondition();
    public static void main(String[] args){
        ReentrantLockTest testMain = new ReentrantLockTest();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
    }
    class Producer implements Runnable{
        @Override
        public void run(){
            for (int i = 0; i <10; i++) {
                try {
                    Thread.sleep(3000);
                } catch (Exception e) {
                    e.printStackTrace();
                }
                // 获取锁
                lock.lock();
                try {
                    while (count == FULL) {
                        try{
                            notFull.await();
                    }catch(InterruptedException e){
                        e.printStackTrace();
                    }
                    }
                    count++;
                    System.out.println(Thread.currentThread().getName()
                            + "生产者生产,目前总共有" + count);
            }finally {
                    lock.unlock();
                }
            }
        }
    }
    class Consumer implements Runnable{
        @Override
        public void run(){
            for (int i = 0; i <10; i++) {
                try{
                    Thread.sleep(3000);
                }
                catch (Exception e){
                    e.printStackTrace();
                }
                lock.lock();
                try{
                    while(count==0){
                        try{
                            notEmpty.await();
                        }catch (InterruptedException e){
                            e.printStackTrace();
                        }
                    }
                    count--;
                    System.out.println(Thread.currentThread().getName() +
                            "消费者消费,目前总共有 " + count);
                }finally {
                    lock.unlock();//解锁
                }
            }
        }
    }
}
  • 2.3 阻塞队列BlockingQueue的实现

被阻塞的情况主要分为如下两种,BlockingQueue 是线程安全的

  • 1,当队列满了的时候进行入队操作;
  • 2,当队列空的时候进行出队操作


Blockqueue 接口的一些方法

四类方法分别对应于:


1,ThrowsException,如果操作不能马上进行,则抛出异常;

2,SpecialValue 如果操作不能马上进行,将会返回一个特殊的值,true或false;

3,Blocks 操作被阻塞;

4,TimeOut 指定时间未执行返回一个特殊值 true 或 false

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
/**
 * 使用 BlockQueue 实现生产者消费模型
 */
public class BlockQueueTest {
    public static  Integer count = 0;
    //创建一个阻塞队列
    final BlockingQueue blockingQueue = new ArrayBlockingQueue<>(10);
    public static void main(String[] args) {
        BlockQueueTest testMain = new BlockQueueTest();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
    }
    class Producer implements  Runnable{
        @Override
        public  void run(){
            for (int i = 0; i <10; i++) {
                try{
                    Thread.sleep(3000);
                }catch (Exception e){
                    e.printStackTrace();
                }
                try{
                    blockingQueue.put(1);
                    count++;
                    System.out.println(Thread.currentThread().getName() + "生产者生产,目前总共有 " + count);
                }catch (InterruptedException e){
                    e.printStackTrace();
                }
            }
        }
    }
    class Consumer implements Runnable{
        @Override
        public void run(){
            for (int i = 0; i <10; i++) {
                try{
                    Thread.sleep(3000);
                }catch (InterruptedException e){
                    e.printStackTrace();
                }
                try{
                    blockingQueue.take();//消费
                    count--;
                    System.out.println(Thread.currentThread().getName() +
                            " 消费者消费,目前总共有 "+ count);
                }catch (InterruptedException e){
                    e.printStackTrace();
                }
            }
        }
    }
}

2.4 信号量 Semaphore 的实现


Semaphore (信号量) 用来控制同时访问特定资源的线程数量,它通过协调各个线程,以保证合理的使用公共资源。Java中的 Semaphone 维护了一个许可集,一开始设定这个许可集的数量,使用 acquire() 方法获得一个许可,当许可不足时会被阻塞,release() 添加一个许可。


下面代码中,还加入了 mutex 信号量,维护消费者和生产者之间的同步关系,保证生产者消费者之间的交替进行

import java.util.concurrent.Semaphore;
public class SemaphoreTest {
    private  static  Integer count = 0;
    //创建三个信号量
    final Semaphore notFull = new Semaphore(10);
    final Semaphore notEmpty = new Semaphore(0);
    final Semaphore mutex = new Semaphore(1);//互斥锁,控制共享数据的互斥访问
    public static void main(String[] args) {
        SemaphoreTest testMain = new SemaphoreTest();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
        new Thread(testMain.new Producer()).start();
        new Thread(testMain.new Consumer()).start();
    }
    class Producer implements Runnable{
        @Override
        public void run(){
            for (int i = 0; i <10; i++) {
                try{
                    Thread.sleep(3000);
                }catch (InterruptedException e){
                    e.printStackTrace();
                }
                try{
                    notFull.acquire();//获取一个信号量
                    mutex.acquire();
                    count++;
                    System.out.println(Thread.currentThread().getName() +
                            "生产者生产,目前总共有 "+count);
                } catch (InterruptedException e){
                    e.printStackTrace();
                } finally {
                    mutex.release();//添加
                    notEmpty.release();
                }
            }
        }
    }
    class Consumer implements  Runnable{
        @Override
        public void run(){
            for (int i = 0; i <10; i++) {
                try{
                    Thread.sleep(3000);
                }catch(InterruptedException e){
                    e.printStackTrace();
                }
                try{
                    notEmpty.acquire();
                    mutex.acquire();
                    count--;
                    System.out.println(Thread.currentThread().getName() +
                            "消费者消费,目前总共有"+count);
                }catch (InterruptedException e){
                    e.printStackTrace();
                }finally {
                    mutex.release();
                    notFull.release();
                }
            }
        }
    }
}


相关文章
|
2月前
|
消息中间件 Java Kafka
在Java中实现分布式事务的常用框架和方法
总之,选择合适的分布式事务框架和方法需要综合考虑业务需求、性能、复杂度等因素。不同的框架和方法都有其特点和适用场景,需要根据具体情况进行评估和选择。同时,随着技术的不断发展,分布式事务的解决方案也在不断更新和完善,以更好地满足业务的需求。你还可以进一步深入研究和了解这些框架和方法,以便在实际应用中更好地实现分布式事务管理。
|
2月前
|
Java
java小工具util系列5:java文件相关操作工具,包括读取服务器路径下文件,删除文件及子文件,删除文件夹等方法
java小工具util系列5:java文件相关操作工具,包括读取服务器路径下文件,删除文件及子文件,删除文件夹等方法
92 9
|
19天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
2月前
|
安全 Java 开发者
Java中WAIT和NOTIFY方法必须在同步块中调用的原因
在Java多线程编程中,`wait()`和`notify()`方法是实现线程间协作的关键。这两个方法必须在同步块或同步方法中调用,这一要求背后有着深刻的原因。本文将深入探讨为什么`wait()`和`notify()`方法必须在同步块中调用,以及这一机制如何确保线程安全和避免死锁。
57 4
|
2月前
|
Java
深入探讨Java中的中断机制:INTERRUPTED和ISINTERRUPTED方法详解
在Java多线程编程中,中断机制是协调线程行为的重要手段。了解和正确使用中断机制对于编写高效、可靠的并发程序至关重要。本文将深入探讨Java中的`Thread.interrupted()`和`Thread.isInterrupted()`方法的区别及其应用场景。
76 4
|
2月前
|
Java 数据处理 数据安全/隐私保护
Java处理数据接口方法
Java处理数据接口方法
30 1
|
3月前
|
Java API
Java 对象释放与 finalize 方法
关于 Java 对象释放的疑惑解答,以及 finalize 方法的相关知识。
68 17
|
2月前
|
存储 Java 程序员
Java基础的灵魂——Object类方法详解(社招面试不踩坑)
本文介绍了Java中`Object`类的几个重要方法,包括`toString`、`equals`、`hashCode`、`finalize`、`clone`、`getClass`、`notify`和`wait`。这些方法是面试中的常考点,掌握它们有助于理解Java对象的行为和实现多线程编程。作者通过具体示例和应用场景,详细解析了每个方法的作用和重写技巧,帮助读者更好地应对面试和技术开发。
145 4
|
2月前
|
Java 测试技术 Maven
Java一分钟之-PowerMock:静态方法与私有方法测试
通过本文的详细介绍,您可以使用PowerMock轻松地测试Java代码中的静态方法和私有方法。PowerMock通过扩展Mockito,提供了强大的功能,帮助开发者在复杂的测试场景中保持高效和准确的单元测试。希望本文对您的Java单元测试有所帮助。
382 2
|
3月前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
29 2