java-subString方法易导致内存溢出

简介: String.substring(int beginIndex, int endIndex)方法来截取字串,但是该方法为了节约时间,提升性能,浪费了大量空间,其源代码如下public String substring(int beginIndex, in...

String.substring(int beginIndex, int endIndex)方法来截取字串,但是该方法为了节约时间,提升性能,浪费了大量空间,其源代码如下

public String substring(int beginIndex, int endIndex) {  
if (beginIndex < 0) {  
    throw new StringIndexOutOfBoundsException(beginIndex);  
}  
if (endIndex > count) {  
    throw new StringIndexOutOfBoundsException(endIndex);  
}  
if (beginIndex > endIndex) {  
    throw new StringIndexOutOfBoundsException(endIndex - beginIndex);  
}  
return ((beginIndex == 0) && (endIndex == count)) ? this :  
    new String(offset + beginIndex, endIndex - beginIndex, value);  
   }  

new String(offset + beginIndex, endIndex - beginIndex, value)返回了一个新建的String对象,查看该构造函数源码如下:

String(int offset, int count, char value[]) {  
    this.value = value;  
    this.offset = offset;  
    this.count = count;  
    }  

其只是通过偏移量来获取一个字符数组的子数组,但是原数组中,没有被选择的并没有及时释放,因此,如果原字符串很长,而需要的子字符串又很短,则很容易造成内存溢出,如以下代码:

public class SubStringTest {  

    public static void main(String[] args) {  
        List<String> handlerList = new ArrayList<String>();  
        /* 
         * HugeStr不到100000次就内存溢出 但是ImprovedHuge不会 
         */  
        for (int i = 0; i < 100000; i++) {  
            HugeStr h = new HugeStr();  
            handlerList.add(h.getSubString(1, 5));  
            System.out.println("times:"+i);  
        }  

    }  

    static class HugeStr {  
        private String str = new String(new char[100000]);  

        // 一个很长的字符串  
        public String getSubString(int begin, int end) {  
            // 获取字符串,有溢出  
            return str.substring(begin, end);  
        }  
    }  

解决方案x = new String(x.substring(x, y));这样的话,就会创建一个新数组,切断与原来的数组的引用,既然JDK6中存在这样一个鸡肋,SUN工程师们肯定会解决的,在JDK7中,该鸡肋已经得到解决。在JDK7中调用substring时,会自动创建一个字符数组,新字符串指向新字符数组,则原来数组可以被GC处理。

//JDK 7  
public String(char value[], int offset, int count) {  
    //check boundary  
    this.value = Arrays.copyOfRange(value, offset, offset + count);  
}  

public String substring(int beginIndex, int endIndex) {  
    //check boundary  
    int subLen = endIndex - beginIndex;  
   return new String(value, beginIndex, subLen);  
String x = "abcdef";  
x = x.substring(1,3);
目录
相关文章
|
27天前
|
存储 缓存 安全
Java内存模型深度解析:从理论到实践####
【10月更文挑战第21天】 本文深入探讨了Java内存模型(JMM)的核心概念与底层机制,通过剖析其设计原理、内存可见性问题及其解决方案,结合具体代码示例,帮助读者构建对JMM的全面理解。不同于传统的摘要概述,我们将直接以故事化手法引入,让读者在轻松的情境中领略JMM的精髓。 ####
34 6
|
28天前
|
消息中间件 Java Kafka
在Java中实现分布式事务的常用框架和方法
总之,选择合适的分布式事务框架和方法需要综合考虑业务需求、性能、复杂度等因素。不同的框架和方法都有其特点和适用场景,需要根据具体情况进行评估和选择。同时,随着技术的不断发展,分布式事务的解决方案也在不断更新和完善,以更好地满足业务的需求。你还可以进一步深入研究和了解这些框架和方法,以便在实际应用中更好地实现分布式事务管理。
|
1月前
|
Java
java小工具util系列5:java文件相关操作工具,包括读取服务器路径下文件,删除文件及子文件,删除文件夹等方法
java小工具util系列5:java文件相关操作工具,包括读取服务器路径下文件,删除文件及子文件,删除文件夹等方法
69 9
|
18天前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
21 0
|
29天前
|
存储 算法 Java
Java内存管理深度剖析与优化策略####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,重点分析了堆内存的分配策略、垃圾回收算法以及如何通过调优提升应用性能。通过案例驱动的方式,揭示了常见内存泄漏的根源与解决策略,旨在为开发者提供实用的内存管理技巧,确保应用程序既高效又稳定地运行。 ####
|
29天前
|
监控 JavaScript Java
Node.js中内存泄漏的检测方法
检测内存泄漏需要综合运用多种方法,并结合实际的应用场景和代码特点进行分析。及时发现和解决内存泄漏问题,可以提高应用的稳定性和性能,避免潜在的风险和故障。同时,不断学习和掌握内存管理的知识,也是有效预防内存泄漏的重要途径。
125 52
|
20天前
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
34 8
|
18天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
22天前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
48 5
|
20天前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####

热门文章

最新文章