NumPy 教程 之 NumPy 排序、条件筛选函数 4
NumPy 排序、条件筛选函数
NumPy 提供了多种排序的方法。 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性。 下表显示了三种排序算法的比较。
种类 速度 最坏情况 工作空间 稳定性
'quicksort'(快速排序) 1 O(n^2) 0 否
'mergesort'(归并排序) 2 O(nlog(n)) ~n/2 是
'heapsort'(堆排序) 3 O(nlog(n)) 0 否
msort、sort_complex、partition、argpartition
函数 描述
msort(a) 数组按第一个轴排序,返回排序后的数组副本。np.msort(a) 相等于 np.sort(a, axis=0)。
sort_complex(a) 对复数按照先实部后虚部的顺序进行排序。
partition(a, kth[, axis, kind, order]) 指定一个数,对数组进行分区
argpartition(a, kth[, axis, kind, order]) 可以通过关键字 kind 指定算法沿着指定轴对数组进行分区
复数排序:
import numpy as np
np.sort_complex([5, 3, 6, 2, 1])
array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j])np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j])
array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j])
partition() 分区排序:
a = np.array([3, 4, 2, 1])
np.partition(a, 3) # 将数组 a 中所有元素(包括重复元素)从小到大排列,3 表示的是排序数组索引为 3 的数字,比该数字小的排在该数字前面,比该数字大的排在该数字的后面
array([2, 1, 3, 4])np.partition(a, (1, 3)) # 小于 1 的在前面,大于 3 的在后面,1和3之间的在中间
array([1, 2, 3, 4])
找到数组的第 3 小(index=2)的值和第 2 大(index=-2)的值
arr = np.array([46, 57, 23, 39, 1, 10, 0, 120])
arr[np.argpartition(arr, 2)[2]]
10
arr[np.argpartition(arr, -2)[-2]]
57
同时找到第 3 和第 4 小的值。注意这里,用 [2,3] 同时将第 3 和第 4 小的排序好,然后可以分别通过下标 [2] 和 [3] 取得。
arr[np.argpartition(arr, [2,3])[2]]
10
arr[np.argpartition(arr, [2,3])[3]]
23