NumPy 教程 之 NumPy Matplotlib 4

简介: NumPy 教程 之 NumPy Matplotlib 4

NumPy 教程 之 NumPy Matplotlib 4

NumPy Matplotlib

Matplotlib 是 Python 的绘图库。 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案。 它也可以和图形工具包一起使用,如 PyQt 和 wxPython。

绘制正弦波

以下实例使用 matplotlib 生成正弦波图。

实例

import numpy as np
import matplotlib.pyplot as plt

计算正弦曲线上点的 x 和 y 坐标

x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x)
plt.title("sine wave form")

使用 matplotlib 来绘制点

plt.plot(x, y)
plt.show()

subplot()

subplot() 函数允许你在同一图中绘制不同的东西。

以下实例绘制正弦和余弦值:

实例

import numpy as np
import matplotlib.pyplot as plt

计算正弦和余弦曲线上的点的 x 和 y 坐标

x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

建立 subplot 网格,高为 2,宽为 1

激活第一个 subplot

plt.subplot(2, 1, 1)

绘制第一个图像

plt.plot(x, y_sin)
plt.title('Sine')

将第二个 subplot 激活,并绘制第二个图像

plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title('Cosine')

展示图像

plt.show()

目录
相关文章
|
15天前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 10
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。Seaborn 支持多种图表类型,如散点图、折线图、柱状图、热图等,并特别强调视觉效果。例如,使用 `sns.violinplot()` 可以轻松绘制展示数据分布的小提琴图。
27 1
|
6天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
25 5
|
16天前
|
数据可视化 数据挖掘 Python
Matplotlib 教程 之 Seaborn 教程 8
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了简洁的高级接口和美观的默认样式,支持多种图表类型,如散点图、折线图、柱状图、热图等,特别适合于数据分析和展示。例如,使用 `sns.boxplot()` 可以轻松绘制箱线图,展示数据的分布情况。
32 3
|
15天前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 9
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。本文介绍了 Seaborn 的主要功能和绘图函数,包括热图 `sns.heatmap()` 的使用方法和示例代码。
14 1
|
19天前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 2
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制,提供高级接口和美观的默认主题,支持散点图、折线图等多种图表类型,安装简便,可通过 `pip install seaborn` 完成。Seaborn 设计注重美观与易用性,内置多种主题如 darkgrid、whitegrid 等,便于用户快速生成高质量的统计图表。
13 3
|
22天前
|
Python
Matplotlib 教程 之 Matplotlib imread() 方法 4
Matplotlib 的 `imread()` 方法用于从文件中读取图像数据,返回一个包含图像信息的 numpy 数组。该方法支持灰度和彩色图像,可通过调整数组元素来修改图像颜色。示例中展示了如何将图像中的绿色和蓝色通道置零,从而显示红色图像。
13 1
|
17天前
|
数据可视化 DataX Python
Matplotlib 教程 之 Seaborn 教程 6
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于绘制统计图形。它提供高级接口和美观的默认主题,简化了复杂图形的绘制过程。本文档介绍了 Seaborn 的主要绘图函数,如 `sns.lineplot()` 用于绘制变量变化趋势的折线图,并给出了示例代码。
22 0
|
18天前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 4
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于绘制统计图形。它提供了高级接口和美观的默认主题,简化了复杂图形的绘制过程。以下示例展示了如何使用 Seaborn 和 Matplotlib 绘制一个简单的柱状图,展示不同产品的销售情况。
13 0
|
20天前
|
Python
Matplotlib 教程 之 Matplotlib 中文显示 4
Matplotlib 中文显示教程,介绍如何通过设置字体参数或下载支持中文的字体库(如思源黑体)来实现在 Matplotlib 中正确显示中文。示例代码展示了如何使用思源黑体设置图表标题和轴标签的中文显示。
8 0
|
20天前
|
Python
Matplotlib 教程 之 Matplotlib 中文显示 3
Matplotlib 是一个强大的绘图库,但默认不支持中文显示。通过设置字体参数或下载支持中文的字体库,可以解决这一问题。例如,设置 `plt.rcParams['font.family']` 为 `'Heiti TC'`,即可在图表中正确显示中文标题和标签。
12 0