Python:用numpy+OpenCV快速实现矫正图像的功能

简介: 透视变换是一个很实用的功能,当用手机去拍证件或者名片时,经常会拍歪,或者有边框。如果你使用过类似“扫描全能王”的软件,你应该知道,他们会自动把证件矫正并除边框,它就是通过透视变换实现的,和numpy中的仿射变换一样。

透视变换是一个很实用的功能,当用手机去拍证件或者名片时,经常会拍歪,或者有边框。如果你使用过类似“扫描全能王”的软件,你应该知道,他们会自动把证件矫正并除边框,它就是通过透视变换实现的,和numpy中的仿射变换一样。

img_84e6190b1637d423d8056c3508021e72.png
左图为原图,右图为矫正后的图

1.运行环境


2.代码

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('E:\\card2.jpg')
rows, cols = img.shape[:2]
# 原图中书本的四个角点
pts1 = np.float32([[69, 163], [704, 62], [162, 675], [970, 411]])
# 变换后分别在左上、右上、左下、右下四个点
pts2 = np.float32([[0, 1000], [0, 0], [750, 1000], [750, 0]])
# 生成透视变换矩阵
M = cv2.getPerspectiveTransform(pts1, pts2)
# 进行透视变换
dst = cv2.warpPerspective(img, M, (750, 1000))
plt.subplot(121), plt.imshow(img[:, :, ::-1]), plt.title('input')
plt.subplot(122), plt.imshow(dst[:, :, ::-1]), plt.title('output')
# img[:, :, ::-1]是将BGR转化为RGB
plt.show()

3.解析

img_47ec7843995158475d0c6994661fe574.jpe
图中角点坐标需要自己设定

通过锁定书的角点,并设定改变后的角点,来达到矫正图像的目的。 坐标原点在图片左上角!

目录
相关文章
|
1月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
342 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
1月前
|
计算机视觉 Python
Python实用记录(一):如何将不同类型视频按关键帧提取并保存图片,实现图片裁剪功能
这篇文章介绍了如何使用Python和OpenCV库从不同格式的视频文件中按关键帧提取图片,并展示了图片裁剪的方法。
71 0
|
8天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
11天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
12天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
38 3
|
16天前
|
设计模式 缓存 测试技术
Python中的装饰器:功能增强与代码复用的艺术####
本文将深入探讨Python中装饰器的概念、用途及实现方式,通过实例演示其如何为函数或方法添加新功能而不影响原有代码结构,从而提升代码的可读性和可维护性。我们将从基础定义出发,逐步深入到高级应用,揭示装饰器在提高代码复用性方面的强大能力。 ####
|
17天前
|
缓存 测试技术 数据安全/隐私保护
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第29天】本文通过深入浅出的方式,探讨了Python装饰器的概念、使用场景和实现方法。文章不仅介绍了装饰器的基本知识,还通过实例展示了如何利用装饰器优化代码结构,提高代码的可读性和重用性。适合初学者和有一定经验的开发者阅读,旨在帮助读者更好地理解和应用装饰器,提升编程效率。
|
19天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
28 3
|
24天前
|
开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第22天】在Python的世界里,装饰器是一个强大的工具,它能够让我们以简洁的方式修改函数的行为,增加额外的功能而不需要重写原有代码。本文将带你了解装饰器的基本概念,并通过实例展示如何一步步构建自己的装饰器,从而让你的代码更加高效、易于维护。
|
20天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
37 2