NumPy 泊松分布模拟与 Seaborn 可视化技巧

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 泊松分布是描述单位时间间隔内随机事件发生次数的离散概率分布,参数λ表示平均速率。公式为 P(k) = e^(-λ) (λ^k) / k!。NumPy 的 `random.poisson()` 可生成泊松分布数据。当 λ 很大时,泊松分布近似正态分布。练习包括模拟顾客到达、比较不同 λ 下的分布及模拟电话呼叫中心。使用 Seaborn 可进行可视化。关注公众号 `Let us Coding` 获取更多文章。

泊松分布

简介

泊松分布是一种离散概率分布,用于描述在给定时间间隔内随机事件发生的次数。它常用于模拟诸如客户到达商店、电话呼叫接入中心等事件。

参数

泊松分布用一个参数来定义:

λ:事件发生的平均速率,表示在单位时间内事件发生的平均次数。

公式

泊松分布的概率质量函数 (PMF) 给出了在指定时间间隔内发生 k 次事件的概率,计算公式为:

P(k) = e^(-λ) (λ^k) / k!

其中:

e^(-λ):表示没有事件发生的概率。
(λ^k):表示 k 次事件发生的概率。
k!:表示 k 个元素的阶乘,即 k × (k - 1) × (k - 2) × ... × 2 × 1。

生成泊松分布数据

NumPy 提供了 random.poisson() 函数来生成服从泊松分布的随机数。该函数接受以下参数:

lam:事件发生的平均速率。
size:输出数组的形状。

示例:生成一个平均速率为 5 的事件在 10 个时间间隔内发生的次数:

import numpy as np

data = np.random.poisson(lam=5, size=10)
print(data)

可视化泊松分布

Seaborn 库提供了便捷的函数来可视化分布,包括泊松分布。

示例:绘制平均速率为 7 的事件在 1000 个时间间隔内发生的次数分布:

import seaborn as sns
import numpy as np

data = np.random.poisson(lam=7, size=1000)
sns.distplot(data)
plt.show()

正态分布与泊松分布的关系

当事件发生的平均速率 λ 很大时,泊松分布可以近似为正态分布。其均值 μ 为 λ,标准差 σ 为 sqrt(λ)。

示例:比较泊松分布和正态分布的形状:

import seaborn as sns
import numpy as np

lam = 50

# 生成泊松分布数据
data_poisson = np.random.poisson(lam=lam, size=1000)

# 生成正态分布数据
mu = lam
sigma = np.sqrt(lam)
data_normal = np.random.normal(loc=mu, scale=sigma, size=1000)

sns.distplot(data_poisson, label="Poisson")
sns.distplot(data_normal, label="Normal")
plt.legend()
plt.show()

练习

  1. 在一个小时内,一家商店平均收到 10 位顾客。模拟顾客到达商店的次数并绘制分布图。
  2. 比较不同平均速率下泊松分布形状的变化。
  3. 利用泊松分布来模拟一个呼叫中心每天接到的电话呼叫数量,并计算平均呼叫量和每天接听超过 30 个电话的概率。

解决方案

import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt

# 1. 模拟顾客到达商店的次数并绘制分布图
data = np.random.poisson(lam=10, size=1000)
sns.distplot(data)
plt.show()

# 2. 比较不同平均速率下泊松分布形状的变化
lam_values = [5, 10, 20, 50]
for lam in lam_values:
    data = np.random.poisson(lam=lam, size=1000)
    sns.distplot(data, label=f"λ={lam}")
plt.legend()
plt.show()

# 3. 模拟电话呼叫数量并计算平均呼叫量和每天接听超过 30 个电话的概率
calls_per_day = np.random.poisson(lam=150, size=365)
print("平均呼叫量:", calls_per_day.mean())
print("每天接听超过 30 个电话的概率:", (calls_per_day > 30).mean())

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

相关文章
|
18天前
|
机器学习/深度学习 数据可视化 Python
NumPy 均匀分布模拟及 Seaborn 可视化教程
本文介绍了均匀分布和逻辑分布。均匀分布是连续概率分布,所有事件在指定范围内有相等概率,常用于随机数生成。其概率密度函数为 1/(b-a),其中 a 和 b 分别是下限和上限。NumPy 的 `random.uniform()` 可生成均匀分布的随机数。逻辑分布,或 Logistic 分布,常用于 S 形增长现象的建模和机器学习,如逻辑回归。它有两个参数:位置参数 loc 和尺度参数 scale。其概率密度函数涉及 1 + (x-loc)/scale 的倒数平方。
|
18天前
|
机器学习/深度学习 数据采集 数据可视化
NumPy 正态分布与 Seaborn 可视化指南
该文档介绍了正态分布(高斯分布),包括它的简介、特征、生成正态分布数据的方法(使用 NumPy 的 `random.normal()` 函数)、如何用 Seaborn 可视化正态分布,以及正态分布的应用(如统计学、机器学习、金融和工程)。还提供了一些练习,如生成特定参数的正态分布随机数并绘图,以及比较不同标准差下的分布形状。最后,给出了练习的解决方案,展示了如何执行这些任务。
|
18天前
|
机器学习/深度学习 数据可视化 Python
NumPy 均匀分布模拟及 Seaborn 可视化教程
本文介绍了均匀分布和逻辑分布。均匀分布是连续概率分布,所有事件在指定范围内有相等概率发生,常用于随机数生成。其概率密度函数为 `f(x) = 1/(b-a)`,其中 a 和 b 分别为下限和上限。NumPy 的 `random.uniform()` 可生成均匀分布的随机数。Seaborn 可用于可视化分布。文中还提供了练习及解决方案,包括生成不同范围的均匀分布随机数、比较分布形状变化及模拟抛硬币实验。逻辑分布则常用于 S 形增长现象的建模,其 PDF 为 `(scale / (π (1 + (x - loc) / scale)^2))`,由位置参数 loc 和尺度参数 scale 定义。
28 0
|
19天前
|
数据可视化 Python
NumPy 二项分布生成与 Seaborn 可视化技巧
二项分布是描述固定次数独立试验中成功次数的概率分布,常用于分析如抛硬币、选择题等二元结果事件。分布由试验次数 n、每次试验的成功概率 p 和成功次数 k 定义。公式为 P(k) = C(n, k) * p^k * (1 - p)^(n - k)。NumPy 的 `random.binomial()` 可生成二项分布随机数,Seaborn 可用于可视化分布。当 n 很大且 p 接近 0.5 时,二项分布近似正态分布。练习包括模拟不同条件下的成功次数分布、比较不同试验次数的影响以及应用二项分布在考试成绩和及格率计算上。
|
21天前
|
数据可视化 Python
NumPy 二项分布生成与 Seaborn 可视化技巧
二项分布是描述固定次数独立试验中成功次数的概率分布,常用于分析二元结果的事件,如抛硬币。分布由参数 n(试验次数)、p(单次成功概率)和 k(成功次数)定义。概率质量函数 P(k) = C(n, k) * p^k * (1 - p)^(n - k)。NumPy 的 `random.binomial()` 可生成二项分布数据,Seaborn 可用于可视化。当 n 大且 p 接近 0.5 时,二项分布近似正态分布。练习包括模拟不同条件下的二项分布和应用到考试场景。
37 0
|
22天前
|
机器学习/深度学习 数据采集 数据可视化
NumPy 正态分布与 Seaborn 可视化指南
正态分布(高斯分布)是重要的概率分布,常用于描述自然和人为现象的数据。分布呈钟形,峰值在均值(μ)处,两侧对称下降。特征由均值和标准差(σ)描述,标准差影响分布的分散程度。NumPy 的 `random.normal()` 函数可生成正态分布随机数,Seaborn 库则方便绘制分布图。正态分布广泛应用于统计学、机器学习、金融和工程等领域。练习包括生成正态分布随机数并作图,以及比较不同标准差下的分布形状。
|
1月前
|
存储 机器学习/深度学习 数据处理
NumPy:从初识到实战,探索Python科学计算的无限可能
NumPy:从初识到实战,探索Python科学计算的无限可能
43 0
|
3天前
|
BI 测试技术 索引
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)-1
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)
|
29天前
|
程序员 开发工具 索引
图解Python numpy基本操作
图解Python numpy基本操作
|
3天前
|
存储 API C语言
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)-2
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)