AI计算机视觉笔记三十二:LPRNet车牌识别

简介: LPRNet是一种基于Pytorch的高性能、轻量级车牌识别框架,适用于中国及其他国家的车牌识别。该网络无需对字符进行预分割,采用端到端的轻量化设计,结合了squeezenet和inception的思想。其创新点在于去除了RNN,仅使用CNN与CTC Loss,并通过特定的卷积模块提取上下文信息。环境配置包括使用CPU开发板和Autodl训练环境。训练和测试过程需搭建虚拟环境并安装相关依赖,执行训练和测试脚本时可能遇到若干错误,需相应调整代码以确保正确运行。使用官方模型可获得较高的识别准确率,自行训练时建议增加训练轮数以提升效果。

一、介绍

LPRNet的Pytorch实现,一种高性能和轻量级的车牌识别框架。完全适用于中国车牌识别(Chinese License Plate Recognition)及国外车牌识别!
目前仅支持同时识别蓝牌和绿牌,即新能源车牌等中国车牌,但可通过扩展训练数据或微调支持其他类型车牌及提高识别准确率!

该网络的特点:

1、不需要对字符进行预分割,是一个端到端的轻量化字符识别模型,速度快,精度还不错;这里主要是因为仿照squeezenet和inception的思想设计了一个轻量化的卷积模块。
2、仿照的还是经典的CRNN+CTC的思路,不过LPRNet首次将RNN删除了,整个网络只有CNN+CTC Loss。但是也不是说不要上下文信息,只是舍弃了BiLSTM那样的RNN提取上下文,而是在backbone的末尾使用了一个13x1的卷积模块提取序列方向(w)的上下文信息。而且在backbone外还额外使用一个全连接层进行全局上下文特征提取,提取之后再和backbone进行concat特征融合,再输入head。
3、损失使用的CTC Loss、推理应用了贪心算法,搜索取每个位置上类概率的最大值。

二、环境

1、开发板:CPU

2、系统:buildroot

3、训练环境:Autodl

image.png

三、训练和测试

1、训练测试环境搭建

1、创建虚拟环境

conda create -n LRPNet_env python=3.8

2、激活

conda activate LRPNet_env

3、下载代码

git clone https://github.com/sirius-ai/LPRNet_Pytorch.git

注意,使用git克隆方式,不要自己下载解压,经测试自己下载解压文本格式会不同,运行会出错

4、安装依赖项

pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
pip install imutils
pip install opencv-python

安装后执行测试命令

python test_LPRNet.py

在测试过程中出错了下面的错误:

出错1:

ValueError: num_samples should be a positive integer value, but got num_samples=0

pytorch报错:ValueError: num_samples should be a positive integer value, but got num_samp=0-CSDN博客

shuffle的参数设置错误导致,因为已经有batch_sample了,就不需要shuffle来进行随机的sample了,所以在这里的shuffle应该设置为FALSE才对。

修改:

train_LPRNET.py的208行,TRUE改成False

batch_iterator = iter(DataLoader(datasets, args.test_batch_size, shuffle=False, num_workers=args.num_workers, collate_fn=collate_fn))

出错2:

python 代码遇到 float division by zero 怎么解决?-CSDN博客

File "train_LPRNet.py", line 261, in Greedy_Decode_Eval Acc = Tp * 1.0 / (Tp + Tn_1 + Tn_2) ZeroDivisionError: float division by zero

处理:

if Tp + Tn_1 + Tn_2 == 0:
Acc = 0 # 或者 Acc = 1,根据实际需求设置
else:
Acc = Tp * 1.0 / (Tp + Tn_1 + Tn_2)

出错3:

File "train_LPRNet.py", line 268, in Greedy_Decode_Eval print("[Info] Test Speed: {}s 1/{}]".format((t2 - t1) / len(datasets), len(datasets))) ZeroDivisionError: float division by zero

处理:

if len(datasets) == 0:
    print("[Info] 数据集为空,无法计算测试速度")
else:
    print("[Info] Test Speed: {}s 1/{}".format((t2 - t1) / len(datasets), len(datasets)))

出错4:

AttributeError: module 'numpy' has no attribute 'int'. np.int was a deprecated alias for the builtin int. To avoid this error in existing code, use int by itself. Doing this will not modify any behavior and is safe. When replacing np.int, you may wish to use e.g. np.int64 or np.int32 to specify the precision. If you wish to review your current use, check the release note link for additional information.

处理:

pip install numpy==1.19.0

```再次执行上面命令

运行正常

#2、训练
训练按readme执行下面命令:

python train_LPRNet.py

但执行后会出错

![image.png](https://ucc.alicdn.com/pic/developer-ecology/63dzqivu2t45o_cfe3aafa284b421ea4b0492f8d7fea4a.png)
原因是没有训练的数据集,为了测试,使用的是自带的测试数据集

python train_LPRNet.py --train_img_dirs ./data/test/

默认训练只有15轮,数据集也不对,所以测试结果无法作准。

![image.png](https://ucc.alicdn.com/pic/developer-ecology/63dzqivu2t45o_140c5614645f441b8191da6ce3986928.png)
#3、测试
自带的show显示不能使用,原因是没有插件,修改了显示的内容

修改test_LPRNet.py文件下的show函数

def show(img, label, target):
img = np.transpose(img, (1, 2, 0))
img *= 128.
img += 127.5
img = img.astype(np.uint8)

lb = ""
for i in label:
    lb += CHARS[i]
tg = ""
for j in target.tolist():
    tg += CHARS[int(j)]

flag = "F"
if lb == tg:
    flag = "T"
# img = cv2.putText(img, lb, (0,16), cv2.FONT_HERSHEY_COMPLEX_SMALL, 0.6, (0, 0, 255), 1)
img = cv2ImgAddText(img, lb, (0, 0))
#cv2.imshow("test", img)
cv2.imwrite("test.jpg", img)
print("target: ", tg, " ### {} ### ".format(flag), "predict: ", lb)
#cv2.waitKey()
#cv2.destroyAllWindows()
 执行下面命令,执行是正常的,但模型不对,原因是数据集太少。

python test_LPRNet.py --show 1
```
image.png
使用官方给的模型,识别率还是挺好的。
image.png
官方训练集2W多张,自行训练测试。测试增加到1000轮,有部分可以识别了。

相关文章
|
27天前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
27天前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
27天前
|
人工智能 并行计算 测试技术
AI计算机视觉笔记三十一:基于UNetMultiLane的多车道线等识别
该项目基于开源数据集 VIL100 实现了 UNetMultiLane,用于多车道线及车道线类型的识别。数据集中标注了六个车道的车道线及其类型。项目详细记录了从环境搭建到模型训练与测试的全过程,并提供了在 CPU 上进行训练和 ONNX 转换的代码示例。训练过程约需 4 小时完成 50 个 epoch。此外,还实现了视频检测功能,可在视频中实时识别车道线及其类型。
|
27天前
|
人工智能 监控 算法
AI计算机视觉笔记二十 八:基于YOLOv8实例分割的DeepSORT多目标跟踪
本文介绍了YOLOv8实例分割与DeepSORT视觉跟踪算法的结合应用,通过YOLOv8进行目标检测分割,并利用DeepSORT实现特征跟踪,在复杂环境中保持目标跟踪的准确性与稳定性。该技术广泛应用于安全监控、无人驾驶等领域。文章提供了环境搭建、代码下载及测试步骤,并附有详细代码示例。
|
5月前
|
机器学习/深度学习 计算机视觉
AIGC核心技术——计算机视觉(CV)预训练大模型
【1月更文挑战第13天】AIGC核心技术——计算机视觉(CV)预训练大模型
559 3
AIGC核心技术——计算机视觉(CV)预训练大模型
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测
Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测
112 0
|
27天前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
|
3月前
|
自然语言处理 监控 自动驾驶
大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
【7月更文挑战第26天】大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
77 11
|
4月前
|
编解码 机器人 测试技术
2024年6月计算机视觉论文推荐:扩散模型、视觉语言模型、视频生成等
6月还有一周就要结束了,我们今天来总结2024年6月上半月发表的最重要的论文,重点介绍了计算机视觉领域的最新研究和进展。
121 8
|
5月前
|
机器学习/深度学习 编解码 人工智能
Vision Mamba:将Mamba应用于计算机视觉任务的新模型
Mamba是LLM的一种新架构,与Transformers等传统模型相比,它能够更有效地处理长序列。就像VIT一样现在已经有人将他应用到了计算机视觉领域,让我们来看看最近的这篇论文“Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Models,”
511 7

热门文章

最新文章

下一篇
无影云桌面