为何AI更懂你:向量搜索,了解一下!

简介: 现在,你有没有发现自己越来越多地依赖推荐系统,有时候自己搜到的结果好像还没有AI推荐的精准。

现在,你有没有发现自己越来越多地依赖推荐系统,有时候自己搜到的结果好像还没有AI推荐的精准。

那估计有人好奇了,推荐系统怎么这么“聪明”的呢?答案就是:“向量搜索”。今天,我们来聊聊这个技术,看看它是怎么改变了我们获取信息的方式的。

1、向量搜索是什么鬼?

首先,向量搜索到底是什么呢?简单来说,它是一种“懂你”的搜索技术。

传统搜索引擎一般会根据你输入的关键词,去找那些完全匹配的内容。但是向量搜索不一样,它更聪明,不仅是匹配关键词,而且会试图理解你真正的意图和上下文,然后去找那些最符合你需求的内容。

你可以把它想象成一个特别懂你的“老朋友”,它知道你要的是什么,即使你好像啥也没说清楚。

向量搜索的2个明显应用就是推荐系统知识库。无论是购物、音乐推荐 还是 知识库检索,都是向量搜索在背后默默工作。

比如说,你在某个音乐平台听了一首歌,平台不仅会推荐风格相似的歌曲,还会根据歌表达的情绪、歌词的内容给你推荐一些更加相似的歌曲。

2、向量搜索的核心是向量和维度

那么,向量搜索是怎么做到这些的呢?关键就在“向量”和“维度”。

在数学里,向量是有方向和大小的,而在向量搜索中,文字或数据会被转换成一个“高维向量”。

每个维度代表着数据的不同特性,比如情感、语义或者上下文。想象一下,这些向量在高维空间中变成了一个个点,而搜索的过程就是在这个复杂的空间中找离你需求最近的点。

以上的解释可能有点抽象,可以这样理解下:传统搜索就像在一张平面地图上精确找点,而向量搜索则是在一个3D立体空间(多维空间)中找近似点,而且考虑的因素更多更复杂。

3、向量搜索改变了搜索方式

向量搜索不仅让搜索变得更智能了,也改变了我们获取信息的方式。

信息化社会下,信息是爆发式增长的,数据不仅量大而且非常混乱。

向量搜索能够将这些数据转化为我们可以理解和操作的形式。它不仅能够帮助我们寻找精确的信息,还能够通过多个维度寻找最接近的信息,包括从 同义词、含义、意图和上下文等各个角度。

向量搜索不仅是对单个词进行搜索,而且还会分析词与词之间的复杂关系,从而更好地理解每次选择是否更接近或偏离检索句子的含义。

这样一来,我们不仅获取到信息,而且找到了更有意义的结果。

过去,我们需要输入非常精确的关键词才能找到想要的信息,但现在即使描述得比较模糊,向量搜索也能帮我们找到最相关的内容。

这对普通用户来说太方便了,不需要搞懂各种专业术语,只要使用自然语言大致将需求表达清楚,就能得到准确的结果。

4、总结

向量搜索的出现,悄然改变了我们获取信息的方式,标志着搜索技术的一次飞跃。它在推荐系统、生成式AI等领域都在大显身手。

本篇完结!欢迎 关注、加V(yclxiao)交流、全网可搜(程序员半支烟)

原文链接:https://mp.weixin.qq.com/s/eRSZhtMOW2UZ-mt0UnxjlQ

相关文章
|
1月前
|
人工智能 机器人
P人出游,你是否需要一个懂你更懂规划的AI导游
【10月更文挑战第4天】本文介绍了“P人”这一概念,即MBTI人格测试中的感知型人格,他们善于适应变化,追求自由生活。相对于偏好计划和结果导向的“J人”,P人更倾向于即兴行事,如“说走就走的旅行”。为帮助P人更好地规划旅程,阿里云的人工智能平台PAI结合LLaMA Factory微调Qwen2-VL模型,打造了文旅领域知识问答机器人,简化旅行规划。详细部署步骤可参考[官方文档](https://developer.aliyun.com/article/1613527?spm=a2c6h.13066369.question.5.28e33894OiW5jO)。
|
29天前
|
人工智能 供应链 搜索推荐
生成式 AI 与向量搜索如何扩大零售运营:巨大潜力尚待挖掘
唯有打破领域壁垒,让数据在整个系统中流转 方可实现 AI 驱动的自动化增长
|
1月前
|
人工智能 搜索推荐 API
用于企业AI搜索的Bocha Web Search API,给LLM提供联网搜索能力和长文本上下文
博查Web Search API是由博查提供的企业级互联网网页搜索API接口,允许开发者通过编程访问博查搜索引擎的搜索结果和相关信息,实现在应用程序或网站中集成搜索功能。该API支持近亿级网页内容搜索,适用于各类AI应用、RAG应用和AI Agent智能体的开发,解决数据安全、价格高昂和内容合规等问题。通过注册博查开发者账户、获取API KEY并调用API,开发者可以轻松集成搜索功能。
|
30天前
|
机器学习/深度学习 存储 人工智能
揭秘机器学习背后的神秘力量:如何高效收集数据,让AI更懂你?
【10月更文挑战第12天】在数据驱动的时代,机器学习广泛应用,从智能推荐到自动驾驶。本文以电商平台个性化推荐系统为例,探讨数据收集方法,包括明确数据需求、选择数据来源、编写代码自动化收集、数据清洗与预处理及特征工程,最终完成数据的训练集和测试集划分,为模型训练奠定基础。
42 3
|
1月前
|
人工智能
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
172 2
|
3月前
|
人工智能 自然语言处理 搜索推荐
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
19143 21
|
2月前
|
人工智能 自然语言处理 安全
【通义】AI视界|谷歌推出AI搜索功能“问照片”,照片一问即得……
本文汇总了AI领域的最新动态,包括谷歌推出的“问照片”功能,使用户能用自然语言检索Google Photos;OpenAI的商业用户激增及ChatGPT的广泛应用;Anthropic发布的企业级AI助手Claude Enterprise;美英欧盟首个人工智能法律约束条约;OpenAI前首席科学家新公司获巨额融资;以及比尔·盖茨对AI前景的乐观展望与安全建议。
|
3月前
|
存储 人工智能 安全
保障隐私的Elasticsearch AI搜索解决方案
【8月更文第28天】随着大数据和人工智能技术的发展,搜索引擎在日常生活中扮演着越来越重要的角色。然而,用户隐私保护成为了一个不容忽视的问题。本文将探讨如何在确保用户数据隐私的同时,利用Elasticsearch实现智能搜索功能。我们将介绍一种综合方案,该方案结合了加密技术、差分隐私、匿名化处理以及安全多方计算等方法,以保障用户数据的安全性
163 0
|
3月前
|
存储 人工智能 关系型数据库
使用 PostgreSQL pgvector 的 AI 应用程序中的多模态搜索
大型语言模型(LLM)的发展已拓展至多模态领域,不仅能处理文本,还能解析图像。本文介绍如何构建一个多模态搜索应用,用户可通过上传图片或输入文本来搜索印度菜谱。该应用支持多种LLM服务,如OpenAI及Ollama本地部署模型,并运用pgvector扩展在PostgreSQL中高效存储和检索向量嵌入。我们还展示了如何生成菜谱描述的嵌入并向数据库写入这些嵌入,以及如何通过API接口结合文本和图像查询来获取最相关的菜谱结果。此外,讨论了使用分布式SQL数据库如YugabyteDB增强应用的可扩展性和健壮性。
178 0
|
机器学习/深度学习 人工智能 搜索推荐
在线AI技术在搜索与推荐场景的应用
在本届双11中,深度学习和强化学习技术首次得到了大规模的应用。针对双11当天的大流量、高并发的场景,阿里创造性的提出了基于强化学习的实收搜索/推荐排序策略决策模型等技术。本文结合了本届双11搜索和推荐场景详细介绍了电商搜索推荐的技术演变、阿里搜索推荐的新技术体系以及未来发展方向。
9276 0