本文来源:阿里云语音AI
2024通义语音AI技术图景,大模型引领AI再进化(2)https://developer.aliyun.com/article/1587429
FunCodec
FunASR 的主要功能集中在对语音的识别和理解方面,相当于给机器加上了耳朵,而 FunCodec 的主要目标则是语音的量化表示与生成,即给机器加上嘴巴的能力。
语音量化(Speech Codec)的目的是将语音信号编码为一个个离散的token,在语音通信和存储领域具有广泛的应用场景。近些年,得益于深度神经网络的快速发展,研究者们提出了基于神经编解码的语音量化模型。与基于专家知识的传统语音量化方法相比,基于神经网络的模型在更低的码率下获得了更高的语音质量。
与此同时,语音的量化编码也使大规模语言模型LLM具备了统一建模语音和文本的能力,例如VALL-E语音合成模型、VioLA、AudioPALM等语音-文本理解模型等。在此背景下,我们开源了 FunCodec 语音量化编码工具包。
- 它提供了SoundStream、Encodec等SOTA模型的开源实现,以及我们在标准学术数据和内部大规模数据上的预训练模型,希望以此加速该领域的相关研究;
- 考虑到语音在时频域上的结构性,我们进一步提出了时频域的量化模型,它能够在保证量化语音质量的基础上,只需更少的参数和计算量。我们发现频域模型对包括语音在内的音频信号具备更好的建模能力,未来我们将会在FunCodec发布统一音频量化模型,能够处理各种各样的音频信号,包括:语音、声学事件、音乐等;
- 为了探究声学-语义解耦对语音量化带来的影响,我们提出了semantic augmented 的 residual vector quantizer 模块,在极低比特率下展现了较高的语音质量。
以上所有模型都已在ModelScope开源。与语音量化模型一同,我们还会在FunCodec中发布LauraGPT、VALL-E、SpearTTS等基于离散token的语音合成模型。
FunCodec 模型结构
论文预印版下载地址:https://arxiv.org/abs/2309.07405v2
FunCodec开源代码:https://github.com/alibaba-damo-academy/FunCodec
FunCodec开源模型:https://www.modelscope.cn/models?page=1&tasks=audio-codec&type=audio
3D-Speaker开源项目
3D-Speaker是通义实验室语音团队今年推出的说话人相关的开源项目。3D-Speaker的名称有两层含义,一是包含声学信息、语义信息、视觉信息3种模态的说话人识别技术,二是开源了一个多设备(multi-Device)、多距离(multi-Distance)和多方言(multi-Dialect)中文说话人语音数据集。
3D-Speaker开源项目包含说话人识别,说话人确认以及说话人分割任务的训练及推理代码,以及ModelScope上开源的相关预训练模型。
项目地址:https://github.com/alibaba-damo-academy/3D-Speaker
3D-Speaker数据集,包含超过1万名说话人,其中训练集10000人,测试集240人。我们数据在录制时每个说话人同时在多个设备上进行录音,多个设备距离声源不同位置,有些说话人还使用多种方言。我们的数据集包括8种设备、14种中文方言以及0.1m~4m等12种距离。
针对说话人验证任务,我们提供了三个标准测试trials:Trials Cross-Device、Trials Cross-Distance和Trials Cross-Dialect。针对方言语种识别(LID)任务,我们也提供了一个标准测试集以让结果容易比较。3D-Speaker数据使用CC BY-SA 4.0协议。
我们数据网站地址:https://3dspeaker.github.io/,提供了数据下载链接以及发布的baseline等信息。我们在文章中汇报的相关模型(ERes2Net、CAM++等)以及数据的一些预处理代码也已开源,请参考我们的开源项目https://github.com/alibaba-damo-academy/3D-Speaker。如果您基于3D-Speaker数据做出了优秀的结果,也非常欢迎向我们的榜单上提交您的结果。
相关论文:https://arxiv.org/pdf/2306.15354.pdf
Autolabeling开源项目
Autolabel 是我们今年推出的音频自动化标注工具,该工具集成了语音实验室多种原子能力,如语音降噪(ANS)、语音识别(ASR)、语音端点检测(VAD)、时间戳预测(FA)、韵律标注(PWPP)等,使得用户可以使用已有的音频,直接通过 一个Autolabel工具,获取音频所对应的文本、音素、音素时间戳、韵律标注等多种标注信息,适配于后续的语音合成及其他相关任务,如轻量化定制和大规模语音数据标注等。目前该工具的下载量达到11w+。
Modelscope地址:https://modelscope.cn/models/damo/speech_ptts_autolabel_16k
在Autolabel中,支持三种采样率(16k 24k 48k)音频的输入,首先通过ANS对其进行降噪,其次为保证切分后的音频长度合适且尽可能保留语音完整性,对降噪后音频进行多个阈值的VAD切分和ASR获取对应文本,然后通过文本转音素和FA获取音素及其对应时间戳,再根据文本和真实音频标注PWPP进行韵律标注预测,最后整理所有生成对应标注。其中如ANS和VAD对音频有特殊处理等为可选工具。
KAN-TTS开源项目
KAN-TTS是通义实验室语音团队开源的一套语音合成模型训练框架,包含Sambert、nsf-hifigan等模型的训练、推理脚本,能够训练出具有高自然度和韵律丰富度的语音合成模型。
KAN-TTS支持中、英、日、德、韩等十一种外语和上海话、四川话、粤语等多地方言的数据处理,目前KAN-TTS已在ModelScope开源社区贡献了40多个语音合成模型,覆盖多情感、多语言、个性化人声定制等多个类别。同时KAN-TTS还配套了自动化数据标注工具AutoLabel,开发者可根据这套toolkit自由定制自己的语音合成模型。
KAN-TTS github仓库地址:https://github.com/alibaba-damo-academy/KAN-TTS
KAN-TTS ModelScope模型列表:https://www.modelscope.cn/models?page=1&tasks=text-to-speech&type=audio
我们不断完善和更新开源项目内容,建立开放的开发者社区答疑,如果您有相关项目切磋交流,欢迎在项目中给我们留言。