2024通义语音AI技术图景,大模型引领AI再进化(3)

简介: 2024通义语音AI技术图景,大模型引领AI再进化

本文来源:阿里云语音AI


2024通义语音AI技术图景,大模型引领AI再进化(2)https://developer.aliyun.com/article/1587429

FunCodec

FunASR 的主要功能集中在对语音的识别和理解方面,相当于给机器加上了耳朵,而 FunCodec 的主要目标则是语音的量化表示与生成,即给机器加上嘴巴的能力。


语音量化(Speech Codec)的目的是将语音信号编码为一个个离散的token,在语音通信和存储领域具有广泛的应用场景。近些年,得益于深度神经网络的快速发展,研究者们提出了基于神经编解码的语音量化模型。与基于专家知识的传统语音量化方法相比,基于神经网络的模型在更低的码率下获得了更高的语音质量。


与此同时,语音的量化编码也使大规模语言模型LLM具备了统一建模语音和文本的能力,例如VALL-E语音合成模型、VioLA、AudioPALM等语音-文本理解模型等。在此背景下,我们开源了 FunCodec 语音量化编码工具包。


  • 它提供了SoundStream、Encodec等SOTA模型的开源实现,以及我们在标准学术数据和内部大规模数据上的预训练模型,希望以此加速该领域的相关研究;


  • 考虑到语音在时频域上的结构性,我们进一步提出了时频域的量化模型,它能够在保证量化语音质量的基础上,只需更少的参数和计算量。我们发现频域模型对包括语音在内的音频信号具备更好的建模能力,未来我们将会在FunCodec发布统一音频量化模型,能够处理各种各样的音频信号,包括:语音、声学事件、音乐等;


  • 为了探究声学-语义解耦对语音量化带来的影响,我们提出了semantic augmented 的 residual vector quantizer 模块,在极低比特率下展现了较高的语音质量。


以上所有模型都已在ModelScope开源。与语音量化模型一同,我们还会在FunCodec中发布LauraGPT、VALL-E、SpearTTS等基于离散token的语音合成模型。

image.png

FunCodec 模型结构

论文预印版下载地址:https://arxiv.org/abs/2309.07405v2


FunCodec开源代码:https://github.com/alibaba-damo-academy/FunCodec


FunCodec开源模型:https://www.modelscope.cn/models?page=1&tasks=audio-codec&type=audio


3D-Speaker开源项目


3D-Speaker是通义实验室语音团队今年推出的说话人相关的开源项目。3D-Speaker的名称有两层含义,一是包含声学信息、语义信息、视觉信息3种模态的说话人识别技术,二是开源了一个多设备(multi-Device)、多距离(multi-Distance)和多方言(multi-Dialect)中文说话人语音数据集。


3D-Speaker开源项目包含说话人识别,说话人确认以及说话人分割任务的训练及推理代码,以及ModelScope上开源的相关预训练模型。


项目地址:https://github.com/alibaba-damo-academy/3D-Speaker

image.png

3D-Speaker数据集,包含超过1万名说话人,其中训练集10000人,测试集240人。我们数据在录制时每个说话人同时在多个设备上进行录音,多个设备距离声源不同位置,有些说话人还使用多种方言。我们的数据集包括8种设备、14种中文方言以及0.1m~4m等12种距离。

image.png

针对说话人验证任务,我们提供了三个标准测试trials:Trials Cross-Device、Trials Cross-Distance和Trials Cross-Dialect。针对方言语种识别(LID)任务,我们也提供了一个标准测试集以让结果容易比较。3D-Speaker数据使用CC BY-SA 4.0协议。

image.png

我们数据网站地址https://3dspeaker.github.io/,提供了数据下载链接以及发布的baseline等信息。我们在文章中汇报的相关模型(ERes2Net、CAM++等)以及数据的一些预处理代码也已开源,请参考我们的开源项目https://github.com/alibaba-damo-academy/3D-Speaker。如果您基于3D-Speaker数据做出了优秀的结果,也非常欢迎向我们的榜单上提交您的结果。


相关论文:https://arxiv.org/pdf/2306.15354.pdf

 

Autolabeling开源项目


Autolabel 是我们今年推出的音频自动化标注工具,该工具集成了语音实验室多种原子能力,如语音降噪(ANS)、语音识别(ASR)、语音端点检测(VAD)、时间戳预测(FA)、韵律标注(PWPP)等,使得用户可以使用已有的音频,直接通过 一个Autolabel工具,获取音频所对应的文本、音素、音素时间戳、韵律标注等多种标注信息,适配于后续的语音合成及其他相关任务,如轻量化定制和大规模语音数据标注等。目前该工具的下载量达到11w+。


Modelscope地址:https://modelscope.cn/models/damo/speech_ptts_autolabel_16k

image.png

在Autolabel中,支持三种采样率(16k 24k 48k)音频的输入,首先通过ANS对其进行降噪,其次为保证切分后的音频长度合适且尽可能保留语音完整性,对降噪后音频进行多个阈值的VAD切分和ASR获取对应文本,然后通过文本转音素和FA获取音素及其对应时间戳,再根据文本和真实音频标注PWPP进行韵律标注预测,最后整理所有生成对应标注。其中如ANS和VAD对音频有特殊处理等为可选工具。

 

KAN-TTS开源项目


KAN-TTS是通义实验室语音团队开源的一套语音合成模型训练框架,包含Sambert、nsf-hifigan等模型的训练、推理脚本,能够训练出具有高自然度和韵律丰富度的语音合成模型。


KAN-TTS支持中、英、日、德、韩等十一种外语和上海话、四川话、粤语等多地方言的数据处理,目前KAN-TTS已在ModelScope开源社区贡献了40多个语音合成模型,覆盖多情感、多语言、个性化人声定制等多个类别。同时KAN-TTS还配套了自动化数据标注工具AutoLabel,开发者可根据这套toolkit自由定制自己的语音合成模型。


KAN-TTS github仓库地址:https://github.com/alibaba-damo-academy/KAN-TTS


KAN-TTS ModelScope模型列表:https://www.modelscope.cn/models?page=1&tasks=text-to-speech&type=audio

image.png

image.png 我们不断完善和更新开源项目内容,建立开放的开发者社区答疑,如果您有相关项目切磋交流,欢迎在项目中给我们留言。


目录
打赏
0
0
0
0
580
分享
相关文章
AI大模型运维开发探索第四篇:智能体分阶段演进路线
本文探讨了智能体工程的演进历程,从最初的思维链(智能体1.0)到实例化智能体(智能体2.0),再到结构化智能体(智能体3.0),最终展望了自演进智能体(智能体4.0)。文章详细分析了各阶段遇到的问题及解决策略,如工具调用可靠性、推理能力提升等,并引入了大模型中间件的概念以优化业务平台与工具间的协调。此外,文中还提到了RunnableHub开源项目,为读者提供了实际落地的参考方案。通过不断迭代,智能体逐渐具备更强的适应性和解决问题的能力,展现了未来AI发展的潜力。
WiseMindAI:一款AI智能知识库,数据完全本地化,支持文档对话、10+种文档、10+AI大模型等
WiseMindAI 是一款由 Chris 开发的 AI 智能学习助手,支持数据完全本地化存储,确保用户隐私安全。它兼容多种文档格式(如 PDF、Markdown 等),并提供 AI 文档总结、智能笔记、沉浸式翻译、知识卡片生成等功能。此外,WiseMindAI 支持 10+ 大语言模型和自定义 AI 插件,适用于 Windows 和 Mac 平台,支持简体中文、繁体中文及英文。
132 73
WiseMindAI:一款AI智能知识库,数据完全本地化,支持文档对话、10+种文档、10+AI大模型等
Mureka O1:全球首款「思维链」音乐大模型!昆仑万维让AI作曲自我进化
昆仑万维推出的全球首款音乐推理大模型Mureka O1,引入思维链技术实现多轮自我优化,支持10种语言AI音乐创作,具备音色克隆、风格控制等特色功能,为开发者提供API和微调服务。
104 18
Mureka O1:全球首款「思维链」音乐大模型!昆仑万维让AI作曲自我进化
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
近年来,多模态表示学习在人工智能领域取得显著进展,CLIP和SigLIP成为里程碑式模型。CLIP由OpenAI提出,通过对比学习对齐图像与文本嵌入空间,具备强大零样本学习能力;SigLIP由Google开发,采用sigmoid损失函数优化训练效率与可扩展性。两者推动了多模态大型语言模型(MLLMs)的发展,如LLaVA、BLIP-2和Flamingo等,实现了视觉问答、图像描述生成等复杂任务。这些模型不仅拓展了理论边界,还为医疗、教育等领域释放技术潜力,标志着多模态智能系统的重要进步。
41 13
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
通义灵码2.0深度评测:AI原生研发时代的开发者革命
作为一名五年开发经验的程序员,我深刻感受到从手动编码到AI辅助编程的变革。通义灵码2.0基于Qwen2.5-Coder大模型,通过代码生成、多文件协同、单元测试和跨语言支持等功能,显著提升开发效率。它能生成完整工程代码,自动处理复杂业务逻辑与依赖关系;在系统升级和微服务改造中表现出色;自动生成高质量单元测试用例;还具备跨语言转换能力。尽管存在一些改进空间,但其高频迭代和功能优化展现了巨大潜力。通义灵码2.0正推动软件开发从“体力活”向“架构创造力”转型,是开发者不可错过的生产力工具。
通义灵码2.0深度评测:AI原生研发时代的开发者革命
手把手体验通义灵码2.0:AI程序员如何让我从“调参侠”进阶“架构师”?
通义灵码2.0是一款强大的AI编程工具,帮助开发者从“调参侠”进阶为“架构师”。它通过跨语言开发支持、智能单元测试生成和图生代码等功能,大幅提升开发效率。例如,将Python数据处理函数一键转为React+ECharts组件,自动生成单元测试用例,甚至通过草图生成前端布局代码。此外,新增的QwQ模型具备“代码脑补”能力,可推荐性能优化策略。尽管功能强大,但仍需注意环境隔离与代码审查,避免过度依赖。通义灵码2.0不仅是工具,更是开发者的“外接大脑”。
35 8
|
3天前
|
通义灵码2.0 寻找AI程序员{头号玩家}
通义灵码联合 CHERRY 中国发起“头号玩家”活动,寻找 AI 程序员!体验 AI 智能编码新功能,如图生代码、单元测试、跨语言编程等。完成任意两个任务即可赢取联名定制机械键盘、折扣券及社区积分等奖品。活动截止至4月15日,点击链接参与,探索未来编程乐趣!
32 6
全民AI时代,大模型客户端和服务端的实时通信到底用什么协议?
本文将分享 SSE 和 WebSocket 这两个AI大模型应用的标配网络通信协议,一起重新认识下这两位新时代里的老朋友。
22 0
手把手带你上手通义灵码 2.0,体验 AI 程序员加持下的智能编码助手
手把手带你上手通义灵码 2.0,体验 AI 程序员加持下的智能编码助手

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等