基于直流潮流的IEEE30电力系统停电分布及自组织临界性分析matlab仿真

简介: 本研究提出一种基于直流潮流的算法来分析电力系统的停电分布及自组织临界性。算法迭代更新参数并模拟线路随机断开,运用粒子群优化计算关键值,并评估线路接近容量极限的概率。通过改变参数β和μ,分析不同线路可靠性和容量增加方式下的停电分布,并探索系统趋向临界状态的过程及停电概率分布。该方法基于IEEE30测试系统,利用MATLAB2022a实现,简化处理有功功率流动,适用于评估电力系统稳定性及预防大规模停电事故。

1.课题概述
详细的讲,我们的这个算法的安如下的步骤进行:

步骤1:k=k+1,通过慢动态过程中的几个公式,对Pmax,Fmax进行更新;

步骤2:考虑随机因素进行线路的断开,以一个随机概率来随机断开一条支路;

步骤3:根据慢动态计算得到的参数开始进行慢动态仿真;

步骤4:在慢动态仿真中,使用粒子群算法来计算论文公式5的最小值;

步骤5:进一步计算注入功率和潮流;

步骤6:根据计算得到的潮流和Fmax,根据F/Fmaz > alpha来确定线路是否接近容量极限;

步骤7:如果满足F/Fmaz > alpha,则以一个概率beta进行断开。

步骤8:如果发生断开时间,则返回步骤1,如果没有发生断开事件,则结束当前的动态过程。

最后得到如下指标:

1.改变beta得到不同线路可靠性下的停电分布
2.改变mu得到不同线路容量增加方式下的停电分布
3.趋于临界状态的过程
4.停电概率分布

2.系统仿真结果
改变beta得到不同线路可靠性下的停电分布:

38dd4c11c90047ebd58f05f0e044e6ff_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

改变mu得到不同线路容量增加方式下的停电分布

0c0af4d2c905beb0476842a618366a3e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

趋于临界状态的过程

6f4322604a408bf4635e0cc21b15760c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

停电概率分布

9bcf7e88489c1247b78ebdc1a5c70e60_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.核心程序与模型
版本:MATLAB2022a

    %考虑随机因素进行线路的断开
    %这里以一个0~1的随机数和0.5做比较来判断是否收到随机因素的干扰
    %断开的一个随机位置的线路
    PP = rand(1,1);

    if PP >= 0.5%断开
       NUMS = floor(F_Num*rand(1,1));
       if NUMS == 0
          NUMS = 1;
       end
       LINE(NUMS,3:end) = 0;  
%        CUT(NUMS,k)      = 1;
    else%不断开

    end

    while(flag == 0) %慢动态循环中下进行快动态循环

        %负荷节点的浮动
        p(:,k)   = gama*Pmax(:,k-1);%实际的负荷波动 

        disp('迭代次数:');
        k

        %步骤二
        %步骤二
        %根据公式5来计算出P和F
        %这里利用粒子群的思想,进行函数最小值的求解
        %这里编写了func_pso_calculate_min粒子群优化函数来计算公式5的最小值
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        [V_score2,PP] = func_pso_calculate_min(W,Bus_Num,iter_max,Pmax(:,k),c(:,1),p(:,k)); 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        Ak     = func_Admittance_matrix(BUS,LINE);
        F(:,k) = Ak*PP;

        %步骤三
        %步骤三
        %随机开断线路
        %产生一个随机的数作为概率
        TMP = 0;
        for i = 1:F_Num           
            %如果满足如下的条件,则以一个固定的概率进行断开
            if abs(F(i,k)/Fmax(i,k)) >= alpha
               Pp = rand(1,1);  
               if Pp >= 1 - beta%开断概率
                  CUT(i,k) = 1;
                  flag     = 1;
               else
                  CUT(i,k) = 0;
               end
            end 
        end

        if flag == 0;
           break;
        end

        %步骤四
        %步骤四
        %根据CUT断开矩阵,重新更新网络结构
        %当检测到某个CUT为1的时候,说明要对该线路进行断开
        IND = [];
        cnt = 0;
        for i = 1:F_Num
            if CUT(i,k) == 1;%断开相关的线路
               cnt = cnt + 1;
               LINE(i,3:end) = 0; 
               IND(cnt) = i;
            end
        end
    end
    %这里只是为了对比,所以实际的规模计算见图2,3,4的计算方法,这里简化
    CUT_NUM(k) = sum(CUT(:,k));
    I(k)       = (sum(p(L,k))/(abs(sum(Fmax(G,k)))));
end
02_009m

4.系统原理简介
在电力系统中,潮流计算是评估系统运行状态的基本工具。直流潮流模型是潮流计算的简化版本,它忽略了电力系统的一些复杂因素,如变压器变比、线路充电电容等,而专注于有功功率的流动。IEEE30系统是一个经典的电力系统测试案例,由30个节点和41条线路组成,经常被用于电力系统的各种研究。

4.1、停电分布原理及数学描述
当电力系统受到扰动,例如线路过载或发电机故障,系统的稳定性可能受到影响,严重时可能导致停电。停电分布描述了系统中各个节点或线路在故障条件下的停电概率。

   在数学上,停电分布可以通过概率潮流计算得到。概率潮流计算是在传统的潮流计算基础上,引入概率理论来处理系统中的不确定性。对于IEEE30系统,其停电分布可以通过求解以下数学表达式得到:

Pij=∑k∈NkPk×Oij(k)P{ij} = \sum{k \in N_k} Pk \times O{ij}(k)Pij=k∈Nk∑Pk×Oij(k)

其中,PijP_{ij}Pij 是节点i到节点j的停电概率,PkPkPk 是元件k的故障概率,Oij(k)O{ij}(k)Oij(k) 是元件k故障时节点i到节点j的停电指示函数。

4.2、自组织临界性概念、原理及其在电力系统中的应用
自组织临界性(SOC)是一个描述系统如何在自组织过程中达到临界状态的理论。在电力系统中,SOC理论用于解释大停电事故的发生机理。

   根据SOC理论,电力系统在正常运行时处于一个临界状态,此时系统的小扰动可能不会导致大停电,但当系统接近临界点时,一个小扰动可能引发一连串的故障,最终导致大停电。这种连锁故障的过程可以用如下的数学公式描述:

ΔP=λΔPΔP = λΔPΔP=λΔP

 其中,ΔP\Delta PΔP 是初始扰动,λ\lambdaλ 是系统的临界系数。当λ\lambdaλ 超过1时,系统将进入自组织临界状态,此时的小扰动可能导致大停电。

   在IEEE30系统中,我们可以通过分析系统的潮流分布、元件的负载率以及系统的拓扑结构等因素,来评估系统是否接近临界状态。如果系统处于或接近临界状态,那么就需要采取预防措施,避免连锁故障的发生。

    基于直流潮流的IEEE30电力系统的停电分布及自组织临界性的分析,揭示了电力系统在面临扰动时的可能行为及其后果。首先,通过概率潮流计算,我们可以得到系统的停电分布,了解系统中各个部分在故障条件下的停电风险。然后,引入自组织临界性理论,我们可以从全新的角度理解电力系统的稳定性问题,尤其是大停电事故的发生机理。这些理解将有助于我们更好地设计和运营电力系统,提高其稳定性和可靠性。
相关文章
|
1天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
基于毕奥-萨伐尔定律的交流电机的4极旋转磁场matlab模拟与仿真
本课题基于毕奥-萨伐尔定律研究交流电机的4极旋转磁场,对比不同定子半径和2极旋转磁场。通过MATLAB2022a进行仿真,核心程序计算每个导线对空间点的磁场贡献,并绘制磁场分布。毕奥-萨伐尔定律描述了电流元产生的磁场分布,对于理解交流电机中旋转磁场的形成至关重要。
|
7天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1天前
|
机器学习/深度学习 存储 算法
基于圆柱体镜子和光线跟踪实现镜反射观测全景观图的matlab模拟仿真
本程序基于圆柱体镜子和光线跟踪技术,实现镜反射观测全景观图。通过模拟光线在场景与圆柱镜面之间的交互,构建出360°全景视图。核心算法涉及几何光学、计算机图形学和数值计算,适用于MATLAB 2022a版本。
|
1天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
32 0
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
7天前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
2月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
153 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
2月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
113 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
2月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
79 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章