基于直流潮流的IEEE30电力系统停电分布及自组织临界性分析matlab仿真

简介: 本研究提出一种基于直流潮流的算法来分析电力系统的停电分布及自组织临界性。算法迭代更新参数并模拟线路随机断开,运用粒子群优化计算关键值,并评估线路接近容量极限的概率。通过改变参数β和μ,分析不同线路可靠性和容量增加方式下的停电分布,并探索系统趋向临界状态的过程及停电概率分布。该方法基于IEEE30测试系统,利用MATLAB2022a实现,简化处理有功功率流动,适用于评估电力系统稳定性及预防大规模停电事故。

1.课题概述
详细的讲,我们的这个算法的安如下的步骤进行:

步骤1:k=k+1,通过慢动态过程中的几个公式,对Pmax,Fmax进行更新;

步骤2:考虑随机因素进行线路的断开,以一个随机概率来随机断开一条支路;

步骤3:根据慢动态计算得到的参数开始进行慢动态仿真;

步骤4:在慢动态仿真中,使用粒子群算法来计算论文公式5的最小值;

步骤5:进一步计算注入功率和潮流;

步骤6:根据计算得到的潮流和Fmax,根据F/Fmaz > alpha来确定线路是否接近容量极限;

步骤7:如果满足F/Fmaz > alpha,则以一个概率beta进行断开。

步骤8:如果发生断开时间,则返回步骤1,如果没有发生断开事件,则结束当前的动态过程。

最后得到如下指标:

1.改变beta得到不同线路可靠性下的停电分布
2.改变mu得到不同线路容量增加方式下的停电分布
3.趋于临界状态的过程
4.停电概率分布

2.系统仿真结果
改变beta得到不同线路可靠性下的停电分布:

38dd4c11c90047ebd58f05f0e044e6ff_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

改变mu得到不同线路容量增加方式下的停电分布

0c0af4d2c905beb0476842a618366a3e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

趋于临界状态的过程

6f4322604a408bf4635e0cc21b15760c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

停电概率分布

9bcf7e88489c1247b78ebdc1a5c70e60_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.核心程序与模型
版本:MATLAB2022a

    %考虑随机因素进行线路的断开
    %这里以一个0~1的随机数和0.5做比较来判断是否收到随机因素的干扰
    %断开的一个随机位置的线路
    PP = rand(1,1);

    if PP >= 0.5%断开
       NUMS = floor(F_Num*rand(1,1));
       if NUMS == 0
          NUMS = 1;
       end
       LINE(NUMS,3:end) = 0;  
%        CUT(NUMS,k)      = 1;
    else%不断开

    end

    while(flag == 0) %慢动态循环中下进行快动态循环

        %负荷节点的浮动
        p(:,k)   = gama*Pmax(:,k-1);%实际的负荷波动 

        disp('迭代次数:');
        k

        %步骤二
        %步骤二
        %根据公式5来计算出P和F
        %这里利用粒子群的思想,进行函数最小值的求解
        %这里编写了func_pso_calculate_min粒子群优化函数来计算公式5的最小值
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        [V_score2,PP] = func_pso_calculate_min(W,Bus_Num,iter_max,Pmax(:,k),c(:,1),p(:,k)); 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        Ak     = func_Admittance_matrix(BUS,LINE);
        F(:,k) = Ak*PP;

        %步骤三
        %步骤三
        %随机开断线路
        %产生一个随机的数作为概率
        TMP = 0;
        for i = 1:F_Num           
            %如果满足如下的条件,则以一个固定的概率进行断开
            if abs(F(i,k)/Fmax(i,k)) >= alpha
               Pp = rand(1,1);  
               if Pp >= 1 - beta%开断概率
                  CUT(i,k) = 1;
                  flag     = 1;
               else
                  CUT(i,k) = 0;
               end
            end 
        end

        if flag == 0;
           break;
        end

        %步骤四
        %步骤四
        %根据CUT断开矩阵,重新更新网络结构
        %当检测到某个CUT为1的时候,说明要对该线路进行断开
        IND = [];
        cnt = 0;
        for i = 1:F_Num
            if CUT(i,k) == 1;%断开相关的线路
               cnt = cnt + 1;
               LINE(i,3:end) = 0; 
               IND(cnt) = i;
            end
        end
    end
    %这里只是为了对比,所以实际的规模计算见图2,3,4的计算方法,这里简化
    CUT_NUM(k) = sum(CUT(:,k));
    I(k)       = (sum(p(L,k))/(abs(sum(Fmax(G,k)))));
end
02_009m

4.系统原理简介
在电力系统中,潮流计算是评估系统运行状态的基本工具。直流潮流模型是潮流计算的简化版本,它忽略了电力系统的一些复杂因素,如变压器变比、线路充电电容等,而专注于有功功率的流动。IEEE30系统是一个经典的电力系统测试案例,由30个节点和41条线路组成,经常被用于电力系统的各种研究。

4.1、停电分布原理及数学描述
当电力系统受到扰动,例如线路过载或发电机故障,系统的稳定性可能受到影响,严重时可能导致停电。停电分布描述了系统中各个节点或线路在故障条件下的停电概率。

   在数学上,停电分布可以通过概率潮流计算得到。概率潮流计算是在传统的潮流计算基础上,引入概率理论来处理系统中的不确定性。对于IEEE30系统,其停电分布可以通过求解以下数学表达式得到:

Pij=∑k∈NkPk×Oij(k)P{ij} = \sum{k \in N_k} Pk \times O{ij}(k)Pij=k∈Nk∑Pk×Oij(k)

其中,PijP_{ij}Pij 是节点i到节点j的停电概率,PkPkPk 是元件k的故障概率,Oij(k)O{ij}(k)Oij(k) 是元件k故障时节点i到节点j的停电指示函数。

4.2、自组织临界性概念、原理及其在电力系统中的应用
自组织临界性(SOC)是一个描述系统如何在自组织过程中达到临界状态的理论。在电力系统中,SOC理论用于解释大停电事故的发生机理。

   根据SOC理论,电力系统在正常运行时处于一个临界状态,此时系统的小扰动可能不会导致大停电,但当系统接近临界点时,一个小扰动可能引发一连串的故障,最终导致大停电。这种连锁故障的过程可以用如下的数学公式描述:

ΔP=λΔPΔP = λΔPΔP=λΔP

 其中,ΔP\Delta PΔP 是初始扰动,λ\lambdaλ 是系统的临界系数。当λ\lambdaλ 超过1时,系统将进入自组织临界状态,此时的小扰动可能导致大停电。

   在IEEE30系统中,我们可以通过分析系统的潮流分布、元件的负载率以及系统的拓扑结构等因素,来评估系统是否接近临界状态。如果系统处于或接近临界状态,那么就需要采取预防措施,避免连锁故障的发生。

    基于直流潮流的IEEE30电力系统的停电分布及自组织临界性的分析,揭示了电力系统在面临扰动时的可能行为及其后果。首先,通过概率潮流计算,我们可以得到系统的停电分布,了解系统中各个部分在故障条件下的停电风险。然后,引入自组织临界性理论,我们可以从全新的角度理解电力系统的稳定性问题,尤其是大停电事故的发生机理。这些理解将有助于我们更好地设计和运营电力系统,提高其稳定性和可靠性。
相关文章
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
49 31
空心电抗器的matlab建模与性能仿真分析
空心电抗器是一种无铁芯的电感元件,通过多层并联导线绕制而成。其主要作用是限制电流、滤波、吸收谐波和提高功率因数。电抗器的损耗包括涡流损耗、电阻损耗和环流损耗。涡流损耗由交变磁场引起,电阻损耗与电抗器半径有关,环流损耗与各层电流相关。系统仿真使用MATLAB2022a进行。
|
3天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
2天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
12天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
10天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
10天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
140 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章

下一篇
DataWorks