基于直流潮流的IEEE30电力系统停电分布及自组织临界性分析matlab仿真

简介: 本研究提出一种基于直流潮流的算法来分析电力系统的停电分布及自组织临界性。算法迭代更新参数并模拟线路随机断开,运用粒子群优化计算关键值,并评估线路接近容量极限的概率。通过改变参数β和μ,分析不同线路可靠性和容量增加方式下的停电分布,并探索系统趋向临界状态的过程及停电概率分布。该方法基于IEEE30测试系统,利用MATLAB2022a实现,简化处理有功功率流动,适用于评估电力系统稳定性及预防大规模停电事故。

1.课题概述
详细的讲,我们的这个算法的安如下的步骤进行:

步骤1:k=k+1,通过慢动态过程中的几个公式,对Pmax,Fmax进行更新;

步骤2:考虑随机因素进行线路的断开,以一个随机概率来随机断开一条支路;

步骤3:根据慢动态计算得到的参数开始进行慢动态仿真;

步骤4:在慢动态仿真中,使用粒子群算法来计算论文公式5的最小值;

步骤5:进一步计算注入功率和潮流;

步骤6:根据计算得到的潮流和Fmax,根据F/Fmaz > alpha来确定线路是否接近容量极限;

步骤7:如果满足F/Fmaz > alpha,则以一个概率beta进行断开。

步骤8:如果发生断开时间,则返回步骤1,如果没有发生断开事件,则结束当前的动态过程。

最后得到如下指标:

1.改变beta得到不同线路可靠性下的停电分布
2.改变mu得到不同线路容量增加方式下的停电分布
3.趋于临界状态的过程
4.停电概率分布

2.系统仿真结果
改变beta得到不同线路可靠性下的停电分布:

38dd4c11c90047ebd58f05f0e044e6ff_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

改变mu得到不同线路容量增加方式下的停电分布

0c0af4d2c905beb0476842a618366a3e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

趋于临界状态的过程

6f4322604a408bf4635e0cc21b15760c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

停电概率分布

9bcf7e88489c1247b78ebdc1a5c70e60_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.核心程序与模型
版本:MATLAB2022a

    %考虑随机因素进行线路的断开
    %这里以一个0~1的随机数和0.5做比较来判断是否收到随机因素的干扰
    %断开的一个随机位置的线路
    PP = rand(1,1);

    if PP >= 0.5%断开
       NUMS = floor(F_Num*rand(1,1));
       if NUMS == 0
          NUMS = 1;
       end
       LINE(NUMS,3:end) = 0;  
%        CUT(NUMS,k)      = 1;
    else%不断开

    end

    while(flag == 0) %慢动态循环中下进行快动态循环

        %负荷节点的浮动
        p(:,k)   = gama*Pmax(:,k-1);%实际的负荷波动 

        disp('迭代次数:');
        k

        %步骤二
        %步骤二
        %根据公式5来计算出P和F
        %这里利用粒子群的思想,进行函数最小值的求解
        %这里编写了func_pso_calculate_min粒子群优化函数来计算公式5的最小值
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        [V_score2,PP] = func_pso_calculate_min(W,Bus_Num,iter_max,Pmax(:,k),c(:,1),p(:,k)); 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        Ak     = func_Admittance_matrix(BUS,LINE);
        F(:,k) = Ak*PP;

        %步骤三
        %步骤三
        %随机开断线路
        %产生一个随机的数作为概率
        TMP = 0;
        for i = 1:F_Num           
            %如果满足如下的条件,则以一个固定的概率进行断开
            if abs(F(i,k)/Fmax(i,k)) >= alpha
               Pp = rand(1,1);  
               if Pp >= 1 - beta%开断概率
                  CUT(i,k) = 1;
                  flag     = 1;
               else
                  CUT(i,k) = 0;
               end
            end 
        end

        if flag == 0;
           break;
        end

        %步骤四
        %步骤四
        %根据CUT断开矩阵,重新更新网络结构
        %当检测到某个CUT为1的时候,说明要对该线路进行断开
        IND = [];
        cnt = 0;
        for i = 1:F_Num
            if CUT(i,k) == 1;%断开相关的线路
               cnt = cnt + 1;
               LINE(i,3:end) = 0; 
               IND(cnt) = i;
            end
        end
    end
    %这里只是为了对比,所以实际的规模计算见图2,3,4的计算方法,这里简化
    CUT_NUM(k) = sum(CUT(:,k));
    I(k)       = (sum(p(L,k))/(abs(sum(Fmax(G,k)))));
end
02_009m
AI 代码解读

4.系统原理简介
在电力系统中,潮流计算是评估系统运行状态的基本工具。直流潮流模型是潮流计算的简化版本,它忽略了电力系统的一些复杂因素,如变压器变比、线路充电电容等,而专注于有功功率的流动。IEEE30系统是一个经典的电力系统测试案例,由30个节点和41条线路组成,经常被用于电力系统的各种研究。

4.1、停电分布原理及数学描述
当电力系统受到扰动,例如线路过载或发电机故障,系统的稳定性可能受到影响,严重时可能导致停电。停电分布描述了系统中各个节点或线路在故障条件下的停电概率。

   在数学上,停电分布可以通过概率潮流计算得到。概率潮流计算是在传统的潮流计算基础上,引入概率理论来处理系统中的不确定性。对于IEEE30系统,其停电分布可以通过求解以下数学表达式得到:
AI 代码解读

Pij=∑k∈NkPk×Oij(k)P{ij} = \sum{k \in N_k} Pk \times O{ij}(k)Pij=k∈Nk∑Pk×Oij(k)

其中,PijP_{ij}Pij 是节点i到节点j的停电概率,PkPkPk 是元件k的故障概率,Oij(k)O{ij}(k)Oij(k) 是元件k故障时节点i到节点j的停电指示函数。

4.2、自组织临界性概念、原理及其在电力系统中的应用
自组织临界性(SOC)是一个描述系统如何在自组织过程中达到临界状态的理论。在电力系统中,SOC理论用于解释大停电事故的发生机理。

   根据SOC理论,电力系统在正常运行时处于一个临界状态,此时系统的小扰动可能不会导致大停电,但当系统接近临界点时,一个小扰动可能引发一连串的故障,最终导致大停电。这种连锁故障的过程可以用如下的数学公式描述:
AI 代码解读

ΔP=λΔPΔP = λΔPΔP=λΔP

 其中,ΔP\Delta PΔP 是初始扰动,λ\lambdaλ 是系统的临界系数。当λ\lambdaλ 超过1时,系统将进入自组织临界状态,此时的小扰动可能导致大停电。

   在IEEE30系统中,我们可以通过分析系统的潮流分布、元件的负载率以及系统的拓扑结构等因素,来评估系统是否接近临界状态。如果系统处于或接近临界状态,那么就需要采取预防措施,避免连锁故障的发生。

    基于直流潮流的IEEE30电力系统的停电分布及自组织临界性的分析,揭示了电力系统在面临扰动时的可能行为及其后果。首先,通过概率潮流计算,我们可以得到系统的停电分布,了解系统中各个部分在故障条件下的停电风险。然后,引入自组织临界性理论,我们可以从全新的角度理解电力系统的稳定性问题,尤其是大停电事故的发生机理。这些理解将有助于我们更好地设计和运营电力系统,提高其稳定性和可靠性。
AI 代码解读
目录
打赏
0
1
1
0
184
分享
相关文章
基于线性核函数的SVM数据分类算法matlab仿真
本程序基于线性核函数的SVM算法实现数据分类,使用MATLAB2022A版本运行。程序生成随机二维数据并分为两组,通过自定义SVM模型(不依赖MATLAB工具箱)进行训练,展示不同惩罚参数C下的分类结果及决策边界。SVM通过寻找最优超平面最大化类别间隔,实现高效分类。 核心代码包括数据生成、模型训练和结果可视化,最终绘制了两类数据点及对应的决策边界。此实现有助于理解SVM的工作原理及其在实际应用中的表现。
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
基于扩频解扩+turbo译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
本项目基于MATLAB 2022a实现图像传输通信系统的仿真,涵盖QPSK调制解调、扩频技术和Turbo译码。系统适用于无人机图像传输等高要求场景,确保图像质量和传输稳定性。通过仿真,验证了系统在不同信噪比下的性能,展示了图像的接收与恢复效果。核心代码实现了二进制数据到RGB图像的转换与显示,并保存不同条件下的结果。
22 6
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面
本程序基于小波变换和峰值搜索技术,实现光谱检测的MATLAB仿真,带有GUI界面。它能够对CO2、SO2、CO和CH4四种成分的比例进行分析和提取。程序在MATLAB 2022A版本下运行,通过小波分解、特征提取和峰值检测等步骤,有效识别光谱中的关键特征点。核心代码展示了光谱数据的处理流程,包括绘制原始光谱、导数光谱及标注峰值位置,并保存结果。该方法结合了小波变换的时频分析能力和峰值检测的敏锐性,适用于复杂信号的非平稳特性分析。
|
6月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
273 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
140 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章