基于直流潮流的IEEE30电力系统停电分布及自组织临界性分析matlab仿真

简介: 本研究提出一种基于直流潮流的算法来分析电力系统的停电分布及自组织临界性。算法迭代更新参数并模拟线路随机断开,运用粒子群优化计算关键值,并评估线路接近容量极限的概率。通过改变参数β和μ,分析不同线路可靠性和容量增加方式下的停电分布,并探索系统趋向临界状态的过程及停电概率分布。该方法基于IEEE30测试系统,利用MATLAB2022a实现,简化处理有功功率流动,适用于评估电力系统稳定性及预防大规模停电事故。

1.课题概述
详细的讲,我们的这个算法的安如下的步骤进行:

步骤1:k=k+1,通过慢动态过程中的几个公式,对Pmax,Fmax进行更新;

步骤2:考虑随机因素进行线路的断开,以一个随机概率来随机断开一条支路;

步骤3:根据慢动态计算得到的参数开始进行慢动态仿真;

步骤4:在慢动态仿真中,使用粒子群算法来计算论文公式5的最小值;

步骤5:进一步计算注入功率和潮流;

步骤6:根据计算得到的潮流和Fmax,根据F/Fmaz > alpha来确定线路是否接近容量极限;

步骤7:如果满足F/Fmaz > alpha,则以一个概率beta进行断开。

步骤8:如果发生断开时间,则返回步骤1,如果没有发生断开事件,则结束当前的动态过程。

最后得到如下指标:

1.改变beta得到不同线路可靠性下的停电分布
2.改变mu得到不同线路容量增加方式下的停电分布
3.趋于临界状态的过程
4.停电概率分布

2.系统仿真结果
改变beta得到不同线路可靠性下的停电分布:

38dd4c11c90047ebd58f05f0e044e6ff_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

改变mu得到不同线路容量增加方式下的停电分布

0c0af4d2c905beb0476842a618366a3e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

趋于临界状态的过程

6f4322604a408bf4635e0cc21b15760c_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

停电概率分布

9bcf7e88489c1247b78ebdc1a5c70e60_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.核心程序与模型
版本:MATLAB2022a

    %考虑随机因素进行线路的断开
    %这里以一个0~1的随机数和0.5做比较来判断是否收到随机因素的干扰
    %断开的一个随机位置的线路
    PP = rand(1,1);

    if PP >= 0.5%断开
       NUMS = floor(F_Num*rand(1,1));
       if NUMS == 0
          NUMS = 1;
       end
       LINE(NUMS,3:end) = 0;  
%        CUT(NUMS,k)      = 1;
    else%不断开

    end

    while(flag == 0) %慢动态循环中下进行快动态循环

        %负荷节点的浮动
        p(:,k)   = gama*Pmax(:,k-1);%实际的负荷波动 

        disp('迭代次数:');
        k

        %步骤二
        %步骤二
        %根据公式5来计算出P和F
        %这里利用粒子群的思想,进行函数最小值的求解
        %这里编写了func_pso_calculate_min粒子群优化函数来计算公式5的最小值
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        [V_score2,PP] = func_pso_calculate_min(W,Bus_Num,iter_max,Pmax(:,k),c(:,1),p(:,k)); 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        Ak     = func_Admittance_matrix(BUS,LINE);
        F(:,k) = Ak*PP;

        %步骤三
        %步骤三
        %随机开断线路
        %产生一个随机的数作为概率
        TMP = 0;
        for i = 1:F_Num           
            %如果满足如下的条件,则以一个固定的概率进行断开
            if abs(F(i,k)/Fmax(i,k)) >= alpha
               Pp = rand(1,1);  
               if Pp >= 1 - beta%开断概率
                  CUT(i,k) = 1;
                  flag     = 1;
               else
                  CUT(i,k) = 0;
               end
            end 
        end

        if flag == 0;
           break;
        end

        %步骤四
        %步骤四
        %根据CUT断开矩阵,重新更新网络结构
        %当检测到某个CUT为1的时候,说明要对该线路进行断开
        IND = [];
        cnt = 0;
        for i = 1:F_Num
            if CUT(i,k) == 1;%断开相关的线路
               cnt = cnt + 1;
               LINE(i,3:end) = 0; 
               IND(cnt) = i;
            end
        end
    end
    %这里只是为了对比,所以实际的规模计算见图2,3,4的计算方法,这里简化
    CUT_NUM(k) = sum(CUT(:,k));
    I(k)       = (sum(p(L,k))/(abs(sum(Fmax(G,k)))));
end
02_009m

4.系统原理简介
在电力系统中,潮流计算是评估系统运行状态的基本工具。直流潮流模型是潮流计算的简化版本,它忽略了电力系统的一些复杂因素,如变压器变比、线路充电电容等,而专注于有功功率的流动。IEEE30系统是一个经典的电力系统测试案例,由30个节点和41条线路组成,经常被用于电力系统的各种研究。

4.1、停电分布原理及数学描述
当电力系统受到扰动,例如线路过载或发电机故障,系统的稳定性可能受到影响,严重时可能导致停电。停电分布描述了系统中各个节点或线路在故障条件下的停电概率。

   在数学上,停电分布可以通过概率潮流计算得到。概率潮流计算是在传统的潮流计算基础上,引入概率理论来处理系统中的不确定性。对于IEEE30系统,其停电分布可以通过求解以下数学表达式得到:

Pij=∑k∈NkPk×Oij(k)P{ij} = \sum{k \in N_k} Pk \times O{ij}(k)Pij=k∈Nk∑Pk×Oij(k)

其中,PijP_{ij}Pij 是节点i到节点j的停电概率,PkPkPk 是元件k的故障概率,Oij(k)O{ij}(k)Oij(k) 是元件k故障时节点i到节点j的停电指示函数。

4.2、自组织临界性概念、原理及其在电力系统中的应用
自组织临界性(SOC)是一个描述系统如何在自组织过程中达到临界状态的理论。在电力系统中,SOC理论用于解释大停电事故的发生机理。

   根据SOC理论,电力系统在正常运行时处于一个临界状态,此时系统的小扰动可能不会导致大停电,但当系统接近临界点时,一个小扰动可能引发一连串的故障,最终导致大停电。这种连锁故障的过程可以用如下的数学公式描述:

ΔP=λΔPΔP = λΔPΔP=λΔP

 其中,ΔP\Delta PΔP 是初始扰动,λ\lambdaλ 是系统的临界系数。当λ\lambdaλ 超过1时,系统将进入自组织临界状态,此时的小扰动可能导致大停电。

   在IEEE30系统中,我们可以通过分析系统的潮流分布、元件的负载率以及系统的拓扑结构等因素,来评估系统是否接近临界状态。如果系统处于或接近临界状态,那么就需要采取预防措施,避免连锁故障的发生。

    基于直流潮流的IEEE30电力系统的停电分布及自组织临界性的分析,揭示了电力系统在面临扰动时的可能行为及其后果。首先,通过概率潮流计算,我们可以得到系统的停电分布,了解系统中各个部分在故障条件下的停电风险。然后,引入自组织临界性理论,我们可以从全新的角度理解电力系统的稳定性问题,尤其是大停电事故的发生机理。这些理解将有助于我们更好地设计和运营电力系统,提高其稳定性和可靠性。
相关文章
|
2月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
109 0
|
2月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
173 0
|
2月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
传感器 机器学习/深度学习 算法
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
162 0
|
2月前
|
机器学习/深度学习 存储 人工智能
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
113 0
|
2月前
|
算法 数据挖掘 调度
数据驱动的两阶段分布鲁棒(1-范数和∞-范数约束)的电热综合能源系统研究(Matlab代码实现)
数据驱动的两阶段分布鲁棒(1-范数和∞-范数约束)的电热综合能源系统研究(Matlab代码实现)
117 0
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
212 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
113 0

热门文章

最新文章