【python】python租房数据分析可视化(源码+数据+报告)【独一无二】

简介: 【python】python租房数据分析可视化(源码+数据+报告)【独一无二】


一、设计要求

背景:

随着在线租房平台的兴起,大量的租房数据被生成和存储。这些数据包含了丰富的信息,如房屋类型、

地理位置、租金、设施等。通过对这些数据的分析,我们可以了解租房市场的趋势、租户的偏好以及

不同区域的租金差异等。


要求:

1.数据收集:(数据已获取–租房数据.csv)

从某在线租房平台(如链家、贝壳找房等)获取租房数据,或使用公开可用的租房数据集。

数据应包含至少以下字段:房屋类型、地理位置(具体到小区或街道)、租金、面积、卧室数量、

是否包含某些设施(如空调、独立卫生间等)。


2.数据清洗:

对收集到的数据进行清洗,处理缺失值、异常值以及重复数据。

根据需要对数据进行适当的转换(如将租金从文本转换为数字类型)。


3.数据分析:

使用Python的pandas库对数据进行基本的统计分析,如计算租金的平均值、中位数、众数等。

使用matplotlib或seaborn库绘制图表,展示租金与地理位置、房屋类型、面积等因素的关系。

分析不同区域的租金差异,并尝试解释这些差异的原因(如交通便利性、周边设施等)。

分析租户的偏好,如哪些设施对租户来说是最重要的。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “租房” 获取。👈👈👈


二、数据分析可视化

首先,对租金进行基本统计分析,包括计算租金的平均值、中位数和众数,并绘制租金分布的直方图。

import matplotlib.pyplot as pltimport seaborn as sns
# 租金的基本统计分析print(data['租金'].describe())
# 绘制租金的直方图
plt.figure(figsize=(10, 6))
sns.histplot(data['租金'], kde=True)
plt.title('租金分布')
plt.xlabel('租金 (元)')
plt.ylabel('频数')
plt.show()

从租金分布图中可以看出,大多数房屋的租金集中在6000元到15000元之间,部分高档别墅的租金超过20000元。

不同房屋类型的租金统计

通过箱线图展示不同房屋类型的租金分布情况,可以看出别墅的租金普遍较高,而公寓和一室一厅的租金较低。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “租房” 获取。👈👈👈

# 不同房屋类型的租金统计
plt.figure(figsize=(12, 8))
sns.boxplot(x='房屋类型', y='租金', data=data)
plt.title('不同房屋类型的租金分布')
plt.xlabel('房屋类型')
plt.ylabel('租金 (元)')
plt.show()

不同地理位置的租金统计

通过箱线图展示不同地理位置的租金分布情况,可以发现一些核心区域(如朝阳区、海淀区)的租金明显高于其他区域。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “租房” 获取。👈👈👈

# 不同地理位置的租金统计
plt.figure(figsize=(15, 10))
sns.boxplot(x='地理位置', y='租金', data=data)
plt.title('不同地理位置的租金分布')
plt.xlabel('地理位置')
plt.ylabel('租金 (元)')
plt.xticks(rotation=90)
plt.show()

不同面积段的租金统计

将面积分为多个区间,展示不同面积段的租金分布情况。通常,面积越大,租金越高。

# 不同面积段的租金统计
data['面积段'] = pd.cut(data['面积(平方米)'], bins=[0, 50, 100, 150, 200, 250, 300], labels=['0-50', '51-100', '101-150', '151-200', '201-250', '251-300'])
plt.figure(figsize=(12, 8))
sns.boxplot(x='面积段', y='租金', data=data)
plt.title('不同面积段的租金分布')
plt.xlabel('面积段 (平方米)')
plt.ylabel('租金 (元)')
plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “租房” 获取。👈👈👈

各区域租金的平均值

计算并展示各区域租金的平均值,发现朝阳区和海淀区的租金较高,而远郊区县的租金相对较低。

# 各区域租金的平均值
avg_rent_per_location = data.groupby('地理位置')['租金'].mean().sort_values()
plt.figure(figsize=(15, 10))
avg_rent_per_location.plot(kind='barh')
plt.title('各区域租金的平均值')
plt.xlabel('平均租金 (元)')
plt.ylabel('地理位置')
plt.show()

租户对设施的偏好

分析租户对空调和独立卫生间这两个设施的偏好情况,发现大多数租户更偏好有空调和独立卫生间的房屋。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “租房” 获取。👈👈👈

# 分析租户对设施的偏好
facility_prefs = data[['包含空调', '包含独立卫生间']].apply(pd.Series.value_counts)
facility_prefs.plot(kind='bar', stacked=True, figsize=(10, 6))
plt.title('租户对设施的偏好')
plt.xlabel('设施')
plt.ylabel('数量')
plt.xticks(rotation=0)
plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “租房” 获取。👈👈👈

相关文章
|
1月前
|
存储 机器学习/深度学习 数据可视化
数据集中存在大量的重复值,会对后续的数据分析和处理产生什么影响?
数据集中存在大量重复值可能会对后续的数据分析和处理产生多方面的负面影响
113 56
|
9天前
|
数据采集 监控 数据挖掘
常用电商商品数据API接口(item get)概述,数据分析以及上货
电商商品数据API接口(item get)是电商平台上用于提供商品详细信息的接口。这些接口允许开发者或系统以编程方式获取商品的详细信息,包括但不限于商品的标题、价格、库存、图片、销量、规格参数、用户评价等。这些信息对于电商业务来说至关重要,是商品数据分析、价格监控、上货策略制定等工作的基础。
|
28天前
|
JSON 开发工具 git
基于Python和pygame的植物大战僵尸游戏设计源码
本项目是基于Python和pygame开发的植物大战僵尸游戏,包含125个文件,如PNG图像、Python源码等,提供丰富的游戏开发学习素材。游戏设计源码可从提供的链接下载。关键词:Python游戏开发、pygame、植物大战僵尸、源码分享。
|
1月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
某A保险公司的 数据图表和数据分析
某A保险公司的 数据图表和数据分析
67 0
某A保险公司的 数据图表和数据分析
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
2月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
352 0
|
3月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
60 1
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
57 2