【python】python船舶数据分析可视化(源码+报告+数据集)【独一无二】

简介: 【python】python船舶数据分析可视化(源码+报告+数据集)【独一无二】

一、 设计目的

本报告旨在通过各种数据可视化方法,提供对于一组船舶数据的综合分析。数据集包含了若干船舶的详细规格信息,包括载重吨(Dwt)、船宽(Beam)、船深(Depth)、总吨(Gt)和总长(LOA)等关键指标。通过绘制柱状图、散点图、饼状图和折线图,本报告旨在揭示船舶数据的关键趋势和洞察。

7505a6f359c04085ac99cd4930afb368.png

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 船舶数据分析 ” 获取。👈👈👈


二、数据分析可视化

2. 数据预处理

在数据分析之前,我们首先对数据集进行了清洗,处理了缺失的数据点。为保证分析的准确性,我们采用了各列的均值对空缺值进行填充。这样的处理方式保持了数据的整体分布,但在一些情况下可能需要更精细的缺失数据处理策略。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 船舶数据分析 ” 获取。👈👈👈

plt.rcParams['font.sans-serif'] = ['SimHei']

# 读取Excel文件
df = pd.read_excel('ships.xlsx', engine='openpyxl')
print(df)


3. 载重吨(Dwt)分析

我们使用柱状图详细分析了船舶的载重吨(Dwt)。载重吨是指船舶可安全载运货物的重量,这是船舶设计和商业运营的关键参数之一。柱状图清晰地展示了Dwt最大的前10名船舶,每根柱子代表一艘船舶,柱子的高度表示其Dwt值。这种可视化手段使我们能够直观地比较各船舶的载重能力,辨识出载重能力最强的船舶,这对于安排重货运输和制定运输计划具有重要意义。

# 柱状图:显示Dwt最大的前10名船舶
top10_dwt = df.nlargest(10, 'Dwt')
# 略....
plt.xlabel('船名')
plt.ylabel('Dwt')
plt.xticks(rotation=45)  # 旋转x轴标签,以免重叠
plt.tight_layout()  # 自动调整子图参数,使之填充整个图像区域
plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 船舶数据分析 ” 获取。👈👈👈


4. 船宽(Beam)与船深(Depth)关系分析

船宽(Beam)与船深(Depth)是决定船舶稳定性和内部容积的重要因素。在这一部分,我们利用散点图探索了这两者之间的关系。每个点代表一艘船舶,横坐标为船宽,纵坐标为船深。通过观察散点的分布,我们可以分析出船宽与船深是否呈现出某种相关性。例如,一条趋势线或聚集模式可能表明宽度增加伴随着深度的增加,这可能指向某些设计上的标准或者稳定性考量。

# 散点图:显示Beam和Depth的关系
plt.figure(figsize=(10, 5))
# 略...
plt.ylabel('Depth')
plt.show()


5. 总吨(Gt)分布分析

总吨(Gross Tonnage,Gt)是船舶的一个容积指标,反映了船舶内部可用空间的总体积。我们通过饼状图对Gt最大的前5名船舶进行了分析。饼状图中的每一个扇区代表了一个船舶,其大小表示该船在这五艘船中所占的Gt百分比。这种视图可以立即告诉我们哪些船舶占据了更大的内部空间比例,对于船舶管理者来说,了解船舶的相对规模和容积在资源配置和运营决策中非常重要。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 船舶数据分析 ” 获取。👈👈👈

# 饼状图:显示Gt最大的前5名船舶的百分比
top5_gt = df.nlargest(5, 'Gt')
plt.figure(figsize=(8, 8))
# 略....
plt.title('Gt最大的前5名船舶的百分比')
plt.ylabel('')  # 删除默认的y轴标签
plt.show()


6. 总长(LOA)趋势分析

总长(Length Overall,LOA)是衡量船舶长度的标准,从船头到船尾的最长直线距离。在这一部分,我们使用折线图跟踪不同船舶的LOA。折线图逐个连接每艘船舶的LOA数值,形成了一条线,从而揭示了长度的变化趋势。这可以帮助我们比较船舶的绝对尺寸,并可能揭示某些类别的船舶是否遵循特定的长度标准。

# 折线图:显示不同船舶的LOA
plt.figure(figsize=(10, 5))
# 略....
plt.ylabel('LOA (m)')
plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 船舶数据分析 ” 获取。👈👈👈


7. 船宽和船深的综合比较

最终,我们使用了组合图来同时分析前15名船舶的船宽(Beam)和船深(Depth)。这个图包括了柱状图和折线图,柱状图展示了船宽,而折线图展示了船深。两种图表的结合提供了一个多角度的视图,帮助我们了解在船舶设计中船宽和船深是如何相互作用的。例如,我们可以看到是否有任何共同的趋势,如船宽增加是否通常伴随着船深的增加,这可能反映了设计上对船舶性能和稳定性的考虑。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 船舶数据分析 ” 获取。👈👈👈

top15_beam_depth = df.nlargest(15, 'Beam')
fig, ax1 = plt.subplots(figsize=(14, 7))
color = 'tab:blue'
ax1.set_xlabel('船名')
ax1.set_ylabel('Beam', color=color)
# 略....
ax1.set_xticklabels(top15_beam_depth['Ship_Name'], rotation=45)
plt.xticks(rotation=45)  # 旋转x轴标签,以免重叠

ax2 = ax1.twinx()  # 实例化一个第二个坐标轴
color = 'tab:red'
ax2.set_ylabel('Depth', color=color)
# 略....
ax2.tick_params(axis='y', labelcolor=color)
plt.title('前15名船舶的Beam和Depth')
plt.tight_layout()  # 自动调整子图参数,使之填充整个图像区域
plt.show()


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 船舶数据分析 ” 获取。👈👈👈

目录
打赏
0
1
1
0
63
分享
相关文章
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
基于Python和pygame的植物大战僵尸游戏设计源码
本项目是基于Python和pygame开发的植物大战僵尸游戏,包含125个文件,如PNG图像、Python源码等,提供丰富的游戏开发学习素材。游戏设计源码可从提供的链接下载。关键词:Python游戏开发、pygame、植物大战僵尸、源码分享。
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
93 1
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
68 2
逆袭之路!Python数据分析新手如何快速掌握Matplotlib、Seaborn,让数据说话更响亮?
在数据驱动时代,掌握数据分析技能至关重要。对于Python新手而言,Matplotlib和Seaborn是数据可视化的两大利器。Matplotlib是最基本的可视化库,适合绘制基础图表;Seaborn则提供高层次接口,专注于统计图形和美观样式。建议先学Matplotlib再过渡到Seaborn。快速上手Matplotlib需多实践,示例代码展示了绘制折线图的方法。Seaborn特色功能包括分布图、关系图及分类数据可视化,并提供多种主题和颜色方案。两者结合可实现复杂数据可视化,先用Seaborn绘制统计图,再用Matplotlib进行细节调整。熟练掌握这两者,将显著提升你的数据分析能力。
69 4
惊呆了!Python数据分析师如何用Matplotlib、Seaborn秒变数据可视化大师?
在数据驱动时代,分析师们像侦探一样在数字海洋中寻找线索,揭示隐藏的故事。数据可视化则是他们的“魔法棒”,将复杂数据转化为直观图形。本文将带你探索Python数据分析师如何利用Matplotlib与Seaborn这两大神器,成为数据可视化大师。Matplotlib提供基础绘图功能,而Seaborn在此基础上增强了统计图表的绘制能力,两者结合使数据呈现更高效、美观。无论是折线图还是箱形图,这两个库都能助你一臂之力。
60 4
Python数据分析:数据可视化(Matplotlib、Seaborn)
数据可视化是数据分析中不可或缺的一部分,通过将数据以图形的方式展示出来,可以更直观地理解数据的分布和趋势。在Python中,Matplotlib和Seaborn是两个非常流行和强大的数据可视化库。本文将详细介绍这两个库的使用方法,并附上一个综合详细的例子。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等