【数据挖掘】2022年2023届秋招宏瓴科技公司机器学习算法工程师 笔试题

简介: 关于宏瓴科技有限公司2022-2023年秋招机器学习算法工程师岗位的笔试题目及作者个人对部分题目的解答尝试,涉及贝叶斯误差和贝叶斯最优分类器的概念、贝叶斯误差的重要性和估算方法,以及如何有效利用训练集和测试集进行深度学习模型训练的数据集划分策略。

1 简介

公司:宏瓴科技有限公司
岗位:机器学习算法工程师
笔试时间:2022-9-28
以下答案全是自己总结,这些点对于我来说太难了,我对自己总结的答案也没有信心,题目中说要用公式去表示,我都不知道如何去写。

2 题目

请在题目下方作答。

1. 什么是贝叶斯误差?什么是贝叶斯最优分类器?(以如下的二分类问题为例尽量用公式作答)- (10分)
二分类器:f:X -> Y={0,1}

答:
(1)是指在现有特征集上,任何可以基于特征输入进行随机输出的分类器所能达到的最小误差。
(2)贝叶斯最优分类器为最小化总体风险,只需在每个样本上选择某个条件使得条件风险最小的类别标记时的判定准则。

2. 当我们拿到一个新的(之前没有参考文献)监督学习问题的训练数据的时候,在开始训练之前,为什么需要关心这个问题的贝叶斯误差?有可能通过理论分析直接得到贝叶斯误差的真实值么?如果能,请把计算公式写下来;如果不能,如何用工程办法大致去估计一个贝叶斯误差的替代值? - (10分)

答:
(1)因为理想模型是假设预先知道生成数据的真实概率分布的,但是实际的数据分布中存在一些噪声扰动的,与理想状态并不符合,在监督学习中x到y的映射可能内在是随机的,或者y可能是包括x在内还有其他变量的确定性函数。使用贝叶斯误差,就是能从预先知道的真实分布中预测出现的误差。
(2)不能通过理论分析直接得到贝叶斯误差的真实值,因为这是一个理论值。工程办法是用人类误差当做贝叶斯误差的替代值。

3. 假设我们拿到了训练集和测试集两个标定好的数据集,其中测试集的数据分布与(落地场景中)真实分布一致,但是数据量不大,训练集的数据量大,但是不能保证其分布跟真实分布一致(往后的所有问题中出现的训练集和测试集都做以上假设)。
为了利用好这两个数据集训练出在落地场景中表现尽可能好的深度学习模型,我们应该用以下哪一种数据集划分方式进行训练,为什么?(把一个数据集一分为二的时候,无论两个子集各自占比多少,都假设其数据分布与原数据集一致)- (10分)

a) 训练集 | 测试集
训练集用于训练模型参数,测试集用于测试模型准确率,同时根据测试集上的表现来选择网络超参,比如学习率,网络深度等

b) 9/10的训练集 | 1/10的训练验证集 || 测试集
在训练集上使用留一交叉验证的方式,划分出训练集和训练验证集,在训练集上训练模型参数,用训练验证集上的错误率来选择网络超参

c) 训练集 | 训练验证集 || 测试验证集 | 测试集
把训练集拆分成两部分:大部分用于训练网络参数,少部分保留出来作为训练验证集;测试集也拆分成两部分:测试验证集和最终的测试集

答:选择c,因为当训练集和测试集分布不一致时,构造和测试集分布近似相同的验证集,保证线下验证根线上测试分数不会出现抖动。

还有三个问题忘了

目录
相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
16 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
25天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
53 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
13天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
1月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
32 0
|
1月前
|
机器学习/深度学习 算法
机器学习入门:梯度下降算法(上)
机器学习入门:梯度下降算法(上)