1、简单介绍XGB
是一种基于boosting增强策略的加法模型,训练的时候采用前向分布算法进行贪婪的学习,每次迭代都学习一棵CART树来拟合之前 t-1 棵树的预测结果与训练样本真实值的残差。XGB对GBDT进行了一系列优化,比如损失函数进行了二阶泰勒展开、目标函数加入正则项、支持并行和默认缺失值处理等,在可扩展性和训练速度上有了巨大的提升,但其核心思想没有大的变化。
2、XGB与GBDT的区别
- 基分类器:XGB的基分类器不仅支持CART决策树,还支持线性分类器。
- 导数信息:XGB对损失函数做了二阶泰勒展开,GBDT只用了一阶导数信息,并且XGB还支持自定义损失函数,只要损失函数一阶、二阶可导。
- 正则项:XGB的目标函数加了正则项, 相当于预剪枝,使得学习出来的模型更加不容易过拟合。
- 列抽样:XGB支持列采样,与随机森林类似,用于防止过拟合。
- 缺失值处理:对树中的每个非叶子结点,XGB可以自动学习出它的默认分裂方向。如果某个样本该特征值缺失,会将其划入默认分支。
- 并行化:注意不是tree维度的并行,而是特征维度的并行。XGBt预先将每个特征按特征值排好序,存储为块结构,分裂结点时可以采用多线程并行查找每个特征的最佳分割点,极大提升训练速度。
3、XGBoost为什么使用泰勒二阶展开
- 精准性:相对于GBDT的一阶泰勒展开,XGB采用二阶泰勒展开,可以更为精准的逼近真实的损失函数
- 可扩展性:损失函数支持自定义,只需要新的损失函数二阶可导。
4、XGBoost为什么可以并行训练
- XGB的并行,并不是说每棵树可以并行训练,XGB本质上仍然采用boosting思想,每棵树训练前需要等前面的树训练完成才能开始训练。
- XGBoost的并行,指的是特征维度的并行。在训练之前,每个特征按特征值对样本进行预排序,并存储为Block结构,在后面查找特征分割点时可以重复使用,而且特征已经被存储为一个个block结构,那么在寻找每个特征的最佳分割点时,可以利用多线程对每个block并行计算。
5、XGBoost为什么快
- 分块并行:训练前每个特征按特征值进行排序并存储为Block结构,后面查找特征分割点时重复使用,并且支持并行查找每个特征的分割点
- 候选分位点:每个特征采用常数个分位点作为候选分割点
- CPU cache 命中优化: 使用缓存预取的方法,对每个线程分配一个连续的buffer,读取每个block中样本的梯度信息并存入连续的Buffer中。
- Block 处理优化:Block预先放入内存;Block按列进行解压缩;将Block划分到不同硬盘来提高吞吐。
6、XGBoost防止过拟合的方法
XGB在设计时,为了防止过拟合做了很多优化,具体如下:
- 目标函数添加正则项:叶子节点个数+叶子节点权重的L2正则化
- 列抽样:训练的时候只用一部分特征(不考虑剩余的block块即可)
- 子采样:每轮计算可以不使用全部样本,使算法更加保守
- shrinkage: 可以叫学习率或步长,在XGB 进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,让后面有更大的学习空间。
7、XGBoost如何处理缺失值
XGB模型的一个优点就是允许特征存在缺失值。对缺失值的处理方式如下:
- 在特征k上寻找最佳分割点时,不会对该列特征缺失的样本进行遍历,而只对该列特征值为无缺失值的样本上对应的特征值进行遍历,通过这个技巧来减少了为稀疏离散特征寻找分割点 的时间开销。
- 在逻辑实现上,为了保证完备性,会将该特征值缺失的样本分别分配到左叶子结点和右叶子结点,两种情形都计算一遍后,选择分裂后增益最大的那个方向(左分支或是右分支),作为预测时特征值缺失样本的默认分支方向。
- 如果在训练中没有缺失值而在预测中出现缺失,那么会自动将缺失值的划分方向放到右子结点。